summaryrefslogtreecommitdiff
path: root/libbcache/btree_cache.c
diff options
context:
space:
mode:
authorKent Overstreet <kent.overstreet@gmail.com>2017-01-08 00:13:18 -0900
committerKent Overstreet <kent.overstreet@gmail.com>2017-01-20 09:07:08 -0900
commitb33fc8298f7e13226b9895abc57c9bfce5e3fa2d (patch)
treea3d2a5a909b6372f7777c1c5c18cef5f81d123a9 /libbcache/btree_cache.c
parent7f4191a202ea4558ca2d5eb8a47daea33c9999c7 (diff)
bcache in userspace; userspace fsck
Diffstat (limited to 'libbcache/btree_cache.c')
-rw-r--r--libbcache/btree_cache.c701
1 files changed, 701 insertions, 0 deletions
diff --git a/libbcache/btree_cache.c b/libbcache/btree_cache.c
new file mode 100644
index 00000000..09941906
--- /dev/null
+++ b/libbcache/btree_cache.c
@@ -0,0 +1,701 @@
+
+#include "bcache.h"
+#include "btree_cache.h"
+#include "btree_io.h"
+#include "btree_iter.h"
+#include "btree_locking.h"
+#include "debug.h"
+#include "extents.h"
+
+#include <trace/events/bcache.h>
+
+#define DEF_BTREE_ID(kwd, val, name) name,
+
+const char *bch_btree_id_names[BTREE_ID_NR] = {
+ DEFINE_BCH_BTREE_IDS()
+};
+
+#undef DEF_BTREE_ID
+
+void bch_recalc_btree_reserve(struct cache_set *c)
+{
+ unsigned i, reserve = 16;
+
+ if (!c->btree_roots[0].b)
+ reserve += 8;
+
+ for (i = 0; i < BTREE_ID_NR; i++)
+ if (c->btree_roots[i].b)
+ reserve += min_t(unsigned, 1,
+ c->btree_roots[i].b->level) * 8;
+
+ c->btree_cache_reserve = reserve;
+}
+
+#define mca_can_free(c) \
+ max_t(int, 0, c->btree_cache_used - c->btree_cache_reserve)
+
+static void __mca_data_free(struct cache_set *c, struct btree *b)
+{
+ EBUG_ON(btree_node_write_in_flight(b));
+
+ free_pages((unsigned long) b->data, btree_page_order(c));
+ b->data = NULL;
+ bch_btree_keys_free(b);
+}
+
+static void mca_data_free(struct cache_set *c, struct btree *b)
+{
+ __mca_data_free(c, b);
+ c->btree_cache_used--;
+ list_move(&b->list, &c->btree_cache_freed);
+}
+
+#define PTR_HASH(_k) (bkey_i_to_extent_c(_k)->v._data[0])
+
+static const struct rhashtable_params bch_btree_cache_params = {
+ .head_offset = offsetof(struct btree, hash),
+ .key_offset = offsetof(struct btree, key.v),
+ .key_len = sizeof(struct bch_extent_ptr),
+};
+
+static void mca_data_alloc(struct cache_set *c, struct btree *b, gfp_t gfp)
+{
+ unsigned order = ilog2(btree_pages(c));
+
+ b->data = (void *) __get_free_pages(gfp, order);
+ if (!b->data)
+ goto err;
+
+ if (bch_btree_keys_alloc(b, order, gfp))
+ goto err;
+
+ c->btree_cache_used++;
+ list_move(&b->list, &c->btree_cache_freeable);
+ return;
+err:
+ free_pages((unsigned long) b->data, order);
+ b->data = NULL;
+ list_move(&b->list, &c->btree_cache_freed);
+}
+
+static struct btree *mca_bucket_alloc(struct cache_set *c, gfp_t gfp)
+{
+ struct btree *b = kzalloc(sizeof(struct btree), gfp);
+ if (!b)
+ return NULL;
+
+ six_lock_init(&b->lock);
+ INIT_LIST_HEAD(&b->list);
+ INIT_LIST_HEAD(&b->write_blocked);
+
+ mca_data_alloc(c, b, gfp);
+ return b->data ? b : NULL;
+}
+
+/* Btree in memory cache - hash table */
+
+void mca_hash_remove(struct cache_set *c, struct btree *b)
+{
+ BUG_ON(btree_node_dirty(b));
+
+ b->nsets = 0;
+
+ rhashtable_remove_fast(&c->btree_cache_table, &b->hash,
+ bch_btree_cache_params);
+
+ /* Cause future lookups for this node to fail: */
+ bkey_i_to_extent(&b->key)->v._data[0] = 0;
+}
+
+int mca_hash_insert(struct cache_set *c, struct btree *b,
+ unsigned level, enum btree_id id)
+{
+ int ret;
+ b->level = level;
+ b->btree_id = id;
+
+ ret = rhashtable_lookup_insert_fast(&c->btree_cache_table, &b->hash,
+ bch_btree_cache_params);
+ if (ret)
+ return ret;
+
+ mutex_lock(&c->btree_cache_lock);
+ list_add(&b->list, &c->btree_cache);
+ mutex_unlock(&c->btree_cache_lock);
+
+ return 0;
+}
+
+__flatten
+static inline struct btree *mca_find(struct cache_set *c,
+ const struct bkey_i *k)
+{
+ return rhashtable_lookup_fast(&c->btree_cache_table, &PTR_HASH(k),
+ bch_btree_cache_params);
+}
+
+/*
+ * this version is for btree nodes that have already been freed (we're not
+ * reaping a real btree node)
+ */
+static int mca_reap_notrace(struct cache_set *c, struct btree *b, bool flush)
+{
+ lockdep_assert_held(&c->btree_cache_lock);
+
+ if (!six_trylock_intent(&b->lock))
+ return -ENOMEM;
+
+ if (!six_trylock_write(&b->lock))
+ goto out_unlock_intent;
+
+ if (btree_node_write_error(b))
+ goto out_unlock;
+
+ if (!list_empty(&b->write_blocked))
+ goto out_unlock;
+
+ if (!flush &&
+ (btree_node_dirty(b) ||
+ btree_node_write_in_flight(b)))
+ goto out_unlock;
+
+ /*
+ * Using the underscore version because we don't want to compact bsets
+ * after the write, since this node is about to be evicted - unless
+ * btree verify mode is enabled, since it runs out of the post write
+ * cleanup:
+ */
+ if (btree_node_dirty(b)) {
+ if (verify_btree_ondisk(c))
+ bch_btree_node_write(c, b, NULL, SIX_LOCK_intent, -1);
+ else
+ __bch_btree_node_write(c, b, NULL, SIX_LOCK_read, -1);
+ }
+
+ /* wait for any in flight btree write */
+ wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
+ TASK_UNINTERRUPTIBLE);
+
+ return 0;
+out_unlock:
+ six_unlock_write(&b->lock);
+out_unlock_intent:
+ six_unlock_intent(&b->lock);
+ return -ENOMEM;
+}
+
+static int mca_reap(struct cache_set *c, struct btree *b, bool flush)
+{
+ int ret = mca_reap_notrace(c, b, flush);
+
+ trace_bcache_mca_reap(c, b, ret);
+ return ret;
+}
+
+static unsigned long bch_mca_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct cache_set *c = container_of(shrink, struct cache_set,
+ btree_cache_shrink);
+ struct btree *b, *t;
+ unsigned long nr = sc->nr_to_scan;
+ unsigned long can_free;
+ unsigned long touched = 0;
+ unsigned long freed = 0;
+ unsigned i;
+
+ u64 start_time = local_clock();
+
+ if (btree_shrinker_disabled(c))
+ return SHRINK_STOP;
+
+ if (c->btree_cache_alloc_lock)
+ return SHRINK_STOP;
+
+ /* Return -1 if we can't do anything right now */
+ if (sc->gfp_mask & __GFP_IO)
+ mutex_lock(&c->btree_cache_lock);
+ else if (!mutex_trylock(&c->btree_cache_lock))
+ return -1;
+
+ /*
+ * It's _really_ critical that we don't free too many btree nodes - we
+ * have to always leave ourselves a reserve. The reserve is how we
+ * guarantee that allocating memory for a new btree node can always
+ * succeed, so that inserting keys into the btree can always succeed and
+ * IO can always make forward progress:
+ */
+ nr /= btree_pages(c);
+ can_free = mca_can_free(c);
+ nr = min_t(unsigned long, nr, can_free);
+
+ i = 0;
+ list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
+ touched++;
+
+ if (freed >= nr)
+ break;
+
+ if (++i > 3 &&
+ !mca_reap_notrace(c, b, false)) {
+ mca_data_free(c, b);
+ six_unlock_write(&b->lock);
+ six_unlock_intent(&b->lock);
+ freed++;
+ }
+ }
+restart:
+ list_for_each_entry_safe(b, t, &c->btree_cache, list) {
+ touched++;
+
+ if (freed >= nr) {
+ /* Save position */
+ if (&t->list != &c->btree_cache)
+ list_move_tail(&c->btree_cache, &t->list);
+ break;
+ }
+
+ if (!btree_node_accessed(b) &&
+ !mca_reap(c, b, false)) {
+ /* can't call mca_hash_remove under btree_cache_lock */
+ freed++;
+ if (&t->list != &c->btree_cache)
+ list_move_tail(&c->btree_cache, &t->list);
+
+ mca_data_free(c, b);
+ mutex_unlock(&c->btree_cache_lock);
+
+ mca_hash_remove(c, b);
+ six_unlock_write(&b->lock);
+ six_unlock_intent(&b->lock);
+
+ if (freed >= nr)
+ goto out;
+
+ if (sc->gfp_mask & __GFP_IO)
+ mutex_lock(&c->btree_cache_lock);
+ else if (!mutex_trylock(&c->btree_cache_lock))
+ goto out;
+ goto restart;
+ } else
+ clear_btree_node_accessed(b);
+ }
+
+ mutex_unlock(&c->btree_cache_lock);
+out:
+ bch_time_stats_update(&c->mca_scan_time, start_time);
+
+ trace_bcache_mca_scan(c,
+ touched * btree_pages(c),
+ freed * btree_pages(c),
+ can_free * btree_pages(c),
+ sc->nr_to_scan);
+
+ return (unsigned long) freed * btree_pages(c);
+}
+
+static unsigned long bch_mca_count(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct cache_set *c = container_of(shrink, struct cache_set,
+ btree_cache_shrink);
+
+ if (btree_shrinker_disabled(c))
+ return 0;
+
+ if (c->btree_cache_alloc_lock)
+ return 0;
+
+ return mca_can_free(c) * btree_pages(c);
+}
+
+void bch_btree_cache_free(struct cache_set *c)
+{
+ struct btree *b;
+ unsigned i;
+
+ if (c->btree_cache_shrink.list.next)
+ unregister_shrinker(&c->btree_cache_shrink);
+
+ mutex_lock(&c->btree_cache_lock);
+
+#ifdef CONFIG_BCACHE_DEBUG
+ if (c->verify_data)
+ list_move(&c->verify_data->list, &c->btree_cache);
+
+ free_pages((unsigned long) c->verify_ondisk, ilog2(btree_pages(c)));
+#endif
+
+ for (i = 0; i < BTREE_ID_NR; i++)
+ if (c->btree_roots[i].b)
+ list_add(&c->btree_roots[i].b->list, &c->btree_cache);
+
+ list_splice(&c->btree_cache_freeable,
+ &c->btree_cache);
+
+ while (!list_empty(&c->btree_cache)) {
+ b = list_first_entry(&c->btree_cache, struct btree, list);
+
+ if (btree_node_dirty(b))
+ bch_btree_complete_write(c, b, btree_current_write(b));
+ clear_btree_node_dirty(b);
+
+ mca_data_free(c, b);
+ }
+
+ while (!list_empty(&c->btree_cache_freed)) {
+ b = list_first_entry(&c->btree_cache_freed,
+ struct btree, list);
+ list_del(&b->list);
+ kfree(b);
+ }
+
+ mutex_unlock(&c->btree_cache_lock);
+
+ if (c->btree_cache_table_init_done)
+ rhashtable_destroy(&c->btree_cache_table);
+}
+
+int bch_btree_cache_alloc(struct cache_set *c)
+{
+ unsigned i;
+ int ret;
+
+ ret = rhashtable_init(&c->btree_cache_table, &bch_btree_cache_params);
+ if (ret)
+ return ret;
+
+ c->btree_cache_table_init_done = true;
+
+ bch_recalc_btree_reserve(c);
+
+ for (i = 0; i < c->btree_cache_reserve; i++)
+ if (!mca_bucket_alloc(c, GFP_KERNEL))
+ return -ENOMEM;
+
+ list_splice_init(&c->btree_cache,
+ &c->btree_cache_freeable);
+
+#ifdef CONFIG_BCACHE_DEBUG
+ mutex_init(&c->verify_lock);
+
+ c->verify_ondisk = (void *)
+ __get_free_pages(GFP_KERNEL, ilog2(btree_pages(c)));
+ if (!c->verify_ondisk)
+ return -ENOMEM;
+
+ c->verify_data = mca_bucket_alloc(c, GFP_KERNEL);
+ if (!c->verify_data)
+ return -ENOMEM;
+
+ list_del_init(&c->verify_data->list);
+#endif
+
+ c->btree_cache_shrink.count_objects = bch_mca_count;
+ c->btree_cache_shrink.scan_objects = bch_mca_scan;
+ c->btree_cache_shrink.seeks = 4;
+ c->btree_cache_shrink.batch = btree_pages(c) * 2;
+ register_shrinker(&c->btree_cache_shrink);
+
+ return 0;
+}
+
+/*
+ * We can only have one thread cannibalizing other cached btree nodes at a time,
+ * or we'll deadlock. We use an open coded mutex to ensure that, which a
+ * cannibalize_bucket() will take. This means every time we unlock the root of
+ * the btree, we need to release this lock if we have it held.
+ */
+void mca_cannibalize_unlock(struct cache_set *c)
+{
+ if (c->btree_cache_alloc_lock == current) {
+ trace_bcache_mca_cannibalize_unlock(c);
+ c->btree_cache_alloc_lock = NULL;
+ closure_wake_up(&c->mca_wait);
+ }
+}
+
+int mca_cannibalize_lock(struct cache_set *c, struct closure *cl)
+{
+ struct task_struct *old;
+
+ old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
+ if (old == NULL || old == current)
+ goto success;
+
+ if (!cl) {
+ trace_bcache_mca_cannibalize_lock_fail(c);
+ return -ENOMEM;
+ }
+
+ closure_wait(&c->mca_wait, cl);
+
+ /* Try again, after adding ourselves to waitlist */
+ old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
+ if (old == NULL || old == current) {
+ /* We raced */
+ closure_wake_up(&c->mca_wait);
+ goto success;
+ }
+
+ trace_bcache_mca_cannibalize_lock_fail(c);
+ return -EAGAIN;
+
+success:
+ trace_bcache_mca_cannibalize_lock(c);
+ return 0;
+}
+
+static struct btree *mca_cannibalize(struct cache_set *c)
+{
+ struct btree *b;
+
+ list_for_each_entry_reverse(b, &c->btree_cache, list)
+ if (!mca_reap(c, b, false))
+ return b;
+
+ while (1) {
+ list_for_each_entry_reverse(b, &c->btree_cache, list)
+ if (!mca_reap(c, b, true))
+ return b;
+
+ /*
+ * Rare case: all nodes were intent-locked.
+ * Just busy-wait.
+ */
+ WARN_ONCE(1, "btree cache cannibalize failed\n");
+ cond_resched();
+ }
+}
+
+struct btree *mca_alloc(struct cache_set *c)
+{
+ struct btree *b;
+ u64 start_time = local_clock();
+
+ mutex_lock(&c->btree_cache_lock);
+
+ /*
+ * btree_free() doesn't free memory; it sticks the node on the end of
+ * the list. Check if there's any freed nodes there:
+ */
+ list_for_each_entry(b, &c->btree_cache_freeable, list)
+ if (!mca_reap_notrace(c, b, false))
+ goto out_unlock;
+
+ /*
+ * We never free struct btree itself, just the memory that holds the on
+ * disk node. Check the freed list before allocating a new one:
+ */
+ list_for_each_entry(b, &c->btree_cache_freed, list)
+ if (!mca_reap_notrace(c, b, false)) {
+ mca_data_alloc(c, b, __GFP_NOWARN|GFP_NOIO);
+ if (b->data)
+ goto out_unlock;
+
+ six_unlock_write(&b->lock);
+ six_unlock_intent(&b->lock);
+ goto err;
+ }
+
+ b = mca_bucket_alloc(c, __GFP_NOWARN|GFP_NOIO);
+ if (!b)
+ goto err;
+
+ BUG_ON(!six_trylock_intent(&b->lock));
+ BUG_ON(!six_trylock_write(&b->lock));
+out_unlock:
+ BUG_ON(bkey_extent_is_data(&b->key.k) && PTR_HASH(&b->key));
+ BUG_ON(btree_node_write_in_flight(b));
+
+ list_del_init(&b->list);
+ mutex_unlock(&c->btree_cache_lock);
+out:
+ b->flags = 0;
+ b->written = 0;
+ b->nsets = 0;
+ b->sib_u64s[0] = 0;
+ b->sib_u64s[1] = 0;
+ b->whiteout_u64s = 0;
+ b->uncompacted_whiteout_u64s = 0;
+ bch_btree_keys_init(b, &c->expensive_debug_checks);
+
+ bch_time_stats_update(&c->mca_alloc_time, start_time);
+
+ return b;
+err:
+ /* Try to cannibalize another cached btree node: */
+ if (c->btree_cache_alloc_lock == current) {
+ b = mca_cannibalize(c);
+ list_del_init(&b->list);
+ mutex_unlock(&c->btree_cache_lock);
+
+ mca_hash_remove(c, b);
+
+ trace_bcache_mca_cannibalize(c);
+ goto out;
+ }
+
+ mutex_unlock(&c->btree_cache_lock);
+ return ERR_PTR(-ENOMEM);
+}
+
+/* Slowpath, don't want it inlined into btree_iter_traverse() */
+static noinline struct btree *bch_btree_node_fill(struct btree_iter *iter,
+ const struct bkey_i *k,
+ unsigned level,
+ enum six_lock_type lock_type)
+{
+ struct cache_set *c = iter->c;
+ struct btree *b;
+
+ b = mca_alloc(c);
+ if (IS_ERR(b))
+ return b;
+
+ bkey_copy(&b->key, k);
+ if (mca_hash_insert(c, b, level, iter->btree_id)) {
+ /* raced with another fill: */
+
+ /* mark as unhashed... */
+ bkey_i_to_extent(&b->key)->v._data[0] = 0;
+
+ mutex_lock(&c->btree_cache_lock);
+ list_add(&b->list, &c->btree_cache_freeable);
+ mutex_unlock(&c->btree_cache_lock);
+
+ six_unlock_write(&b->lock);
+ six_unlock_intent(&b->lock);
+ return NULL;
+ }
+
+ /*
+ * If the btree node wasn't cached, we can't drop our lock on
+ * the parent until after it's added to the cache - because
+ * otherwise we could race with a btree_split() freeing the node
+ * we're trying to lock.
+ *
+ * But the deadlock described below doesn't exist in this case,
+ * so it's safe to not drop the parent lock until here:
+ */
+ if (btree_node_read_locked(iter, level + 1))
+ btree_node_unlock(iter, level + 1);
+
+ bch_btree_node_read(c, b);
+ six_unlock_write(&b->lock);
+
+ if (lock_type == SIX_LOCK_read)
+ six_lock_downgrade(&b->lock);
+
+ return b;
+}
+
+/**
+ * bch_btree_node_get - find a btree node in the cache and lock it, reading it
+ * in from disk if necessary.
+ *
+ * If IO is necessary and running under generic_make_request, returns -EAGAIN.
+ *
+ * The btree node will have either a read or a write lock held, depending on
+ * the @write parameter.
+ */
+struct btree *bch_btree_node_get(struct btree_iter *iter,
+ const struct bkey_i *k, unsigned level,
+ enum six_lock_type lock_type)
+{
+ struct btree *b;
+ struct bset_tree *t;
+
+ BUG_ON(level >= BTREE_MAX_DEPTH);
+retry:
+ rcu_read_lock();
+ b = mca_find(iter->c, k);
+ rcu_read_unlock();
+
+ if (unlikely(!b)) {
+ /*
+ * We must have the parent locked to call bch_btree_node_fill(),
+ * else we could read in a btree node from disk that's been
+ * freed:
+ */
+ b = bch_btree_node_fill(iter, k, level, lock_type);
+
+ /* We raced and found the btree node in the cache */
+ if (!b)
+ goto retry;
+
+ if (IS_ERR(b))
+ return b;
+ } else {
+ /*
+ * There's a potential deadlock with splits and insertions into
+ * interior nodes we have to avoid:
+ *
+ * The other thread might be holding an intent lock on the node
+ * we want, and they want to update its parent node so they're
+ * going to upgrade their intent lock on the parent node to a
+ * write lock.
+ *
+ * But if we're holding a read lock on the parent, and we're
+ * trying to get the intent lock they're holding, we deadlock.
+ *
+ * So to avoid this we drop the read locks on parent nodes when
+ * we're starting to take intent locks - and handle the race.
+ *
+ * The race is that they might be about to free the node we
+ * want, and dropping our read lock on the parent node lets them
+ * update the parent marking the node we want as freed, and then
+ * free it:
+ *
+ * To guard against this, btree nodes are evicted from the cache
+ * when they're freed - and PTR_HASH() is zeroed out, which we
+ * check for after we lock the node.
+ *
+ * Then, btree_node_relock() on the parent will fail - because
+ * the parent was modified, when the pointer to the node we want
+ * was removed - and we'll bail out:
+ */
+ if (btree_node_read_locked(iter, level + 1))
+ btree_node_unlock(iter, level + 1);
+
+ if (!btree_node_lock(b, k->k.p, level, iter, lock_type))
+ return ERR_PTR(-EINTR);
+
+ if (unlikely(PTR_HASH(&b->key) != PTR_HASH(k) ||
+ b->level != level ||
+ race_fault())) {
+ six_unlock_type(&b->lock, lock_type);
+ if (btree_node_relock(iter, level + 1))
+ goto retry;
+
+ return ERR_PTR(-EINTR);
+ }
+ }
+
+ prefetch(b->aux_data);
+
+ for_each_bset(b, t) {
+ void *p = (u64 *) b->aux_data + t->aux_data_offset;
+
+ prefetch(p + L1_CACHE_BYTES * 0);
+ prefetch(p + L1_CACHE_BYTES * 1);
+ prefetch(p + L1_CACHE_BYTES * 2);
+ }
+
+ /* avoid atomic set bit if it's not needed: */
+ if (btree_node_accessed(b))
+ set_btree_node_accessed(b);
+
+ if (unlikely(btree_node_read_error(b))) {
+ six_unlock_type(&b->lock, lock_type);
+ return ERR_PTR(-EIO);
+ }
+
+ EBUG_ON(!b->written);
+ EBUG_ON(b->btree_id != iter->btree_id ||
+ BSET_BTREE_LEVEL(&b->data->keys) != level ||
+ bkey_cmp(b->data->max_key, k->k.p));
+
+ return b;
+}