summaryrefslogtreecommitdiff
path: root/c_src/libbcachefs/bcachefs.h
diff options
context:
space:
mode:
Diffstat (limited to 'c_src/libbcachefs/bcachefs.h')
-rw-r--r--c_src/libbcachefs/bcachefs.h1260
1 files changed, 0 insertions, 1260 deletions
diff --git a/c_src/libbcachefs/bcachefs.h b/c_src/libbcachefs/bcachefs.h
deleted file mode 100644
index dac383e3..00000000
--- a/c_src/libbcachefs/bcachefs.h
+++ /dev/null
@@ -1,1260 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef _BCACHEFS_H
-#define _BCACHEFS_H
-
-/*
- * SOME HIGH LEVEL CODE DOCUMENTATION:
- *
- * Bcache mostly works with cache sets, cache devices, and backing devices.
- *
- * Support for multiple cache devices hasn't quite been finished off yet, but
- * it's about 95% plumbed through. A cache set and its cache devices is sort of
- * like a md raid array and its component devices. Most of the code doesn't care
- * about individual cache devices, the main abstraction is the cache set.
- *
- * Multiple cache devices is intended to give us the ability to mirror dirty
- * cached data and metadata, without mirroring clean cached data.
- *
- * Backing devices are different, in that they have a lifetime independent of a
- * cache set. When you register a newly formatted backing device it'll come up
- * in passthrough mode, and then you can attach and detach a backing device from
- * a cache set at runtime - while it's mounted and in use. Detaching implicitly
- * invalidates any cached data for that backing device.
- *
- * A cache set can have multiple (many) backing devices attached to it.
- *
- * There's also flash only volumes - this is the reason for the distinction
- * between struct cached_dev and struct bcache_device. A flash only volume
- * works much like a bcache device that has a backing device, except the
- * "cached" data is always dirty. The end result is that we get thin
- * provisioning with very little additional code.
- *
- * Flash only volumes work but they're not production ready because the moving
- * garbage collector needs more work. More on that later.
- *
- * BUCKETS/ALLOCATION:
- *
- * Bcache is primarily designed for caching, which means that in normal
- * operation all of our available space will be allocated. Thus, we need an
- * efficient way of deleting things from the cache so we can write new things to
- * it.
- *
- * To do this, we first divide the cache device up into buckets. A bucket is the
- * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
- * works efficiently.
- *
- * Each bucket has a 16 bit priority, and an 8 bit generation associated with
- * it. The gens and priorities for all the buckets are stored contiguously and
- * packed on disk (in a linked list of buckets - aside from the superblock, all
- * of bcache's metadata is stored in buckets).
- *
- * The priority is used to implement an LRU. We reset a bucket's priority when
- * we allocate it or on cache it, and every so often we decrement the priority
- * of each bucket. It could be used to implement something more sophisticated,
- * if anyone ever gets around to it.
- *
- * The generation is used for invalidating buckets. Each pointer also has an 8
- * bit generation embedded in it; for a pointer to be considered valid, its gen
- * must match the gen of the bucket it points into. Thus, to reuse a bucket all
- * we have to do is increment its gen (and write its new gen to disk; we batch
- * this up).
- *
- * Bcache is entirely COW - we never write twice to a bucket, even buckets that
- * contain metadata (including btree nodes).
- *
- * THE BTREE:
- *
- * Bcache is in large part design around the btree.
- *
- * At a high level, the btree is just an index of key -> ptr tuples.
- *
- * Keys represent extents, and thus have a size field. Keys also have a variable
- * number of pointers attached to them (potentially zero, which is handy for
- * invalidating the cache).
- *
- * The key itself is an inode:offset pair. The inode number corresponds to a
- * backing device or a flash only volume. The offset is the ending offset of the
- * extent within the inode - not the starting offset; this makes lookups
- * slightly more convenient.
- *
- * Pointers contain the cache device id, the offset on that device, and an 8 bit
- * generation number. More on the gen later.
- *
- * Index lookups are not fully abstracted - cache lookups in particular are
- * still somewhat mixed in with the btree code, but things are headed in that
- * direction.
- *
- * Updates are fairly well abstracted, though. There are two different ways of
- * updating the btree; insert and replace.
- *
- * BTREE_INSERT will just take a list of keys and insert them into the btree -
- * overwriting (possibly only partially) any extents they overlap with. This is
- * used to update the index after a write.
- *
- * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
- * overwriting a key that matches another given key. This is used for inserting
- * data into the cache after a cache miss, and for background writeback, and for
- * the moving garbage collector.
- *
- * There is no "delete" operation; deleting things from the index is
- * accomplished by either by invalidating pointers (by incrementing a bucket's
- * gen) or by inserting a key with 0 pointers - which will overwrite anything
- * previously present at that location in the index.
- *
- * This means that there are always stale/invalid keys in the btree. They're
- * filtered out by the code that iterates through a btree node, and removed when
- * a btree node is rewritten.
- *
- * BTREE NODES:
- *
- * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
- * free smaller than a bucket - so, that's how big our btree nodes are.
- *
- * (If buckets are really big we'll only use part of the bucket for a btree node
- * - no less than 1/4th - but a bucket still contains no more than a single
- * btree node. I'd actually like to change this, but for now we rely on the
- * bucket's gen for deleting btree nodes when we rewrite/split a node.)
- *
- * Anyways, btree nodes are big - big enough to be inefficient with a textbook
- * btree implementation.
- *
- * The way this is solved is that btree nodes are internally log structured; we
- * can append new keys to an existing btree node without rewriting it. This
- * means each set of keys we write is sorted, but the node is not.
- *
- * We maintain this log structure in memory - keeping 1Mb of keys sorted would
- * be expensive, and we have to distinguish between the keys we have written and
- * the keys we haven't. So to do a lookup in a btree node, we have to search
- * each sorted set. But we do merge written sets together lazily, so the cost of
- * these extra searches is quite low (normally most of the keys in a btree node
- * will be in one big set, and then there'll be one or two sets that are much
- * smaller).
- *
- * This log structure makes bcache's btree more of a hybrid between a
- * conventional btree and a compacting data structure, with some of the
- * advantages of both.
- *
- * GARBAGE COLLECTION:
- *
- * We can't just invalidate any bucket - it might contain dirty data or
- * metadata. If it once contained dirty data, other writes might overwrite it
- * later, leaving no valid pointers into that bucket in the index.
- *
- * Thus, the primary purpose of garbage collection is to find buckets to reuse.
- * It also counts how much valid data it each bucket currently contains, so that
- * allocation can reuse buckets sooner when they've been mostly overwritten.
- *
- * It also does some things that are really internal to the btree
- * implementation. If a btree node contains pointers that are stale by more than
- * some threshold, it rewrites the btree node to avoid the bucket's generation
- * wrapping around. It also merges adjacent btree nodes if they're empty enough.
- *
- * THE JOURNAL:
- *
- * Bcache's journal is not necessary for consistency; we always strictly
- * order metadata writes so that the btree and everything else is consistent on
- * disk in the event of an unclean shutdown, and in fact bcache had writeback
- * caching (with recovery from unclean shutdown) before journalling was
- * implemented.
- *
- * Rather, the journal is purely a performance optimization; we can't complete a
- * write until we've updated the index on disk, otherwise the cache would be
- * inconsistent in the event of an unclean shutdown. This means that without the
- * journal, on random write workloads we constantly have to update all the leaf
- * nodes in the btree, and those writes will be mostly empty (appending at most
- * a few keys each) - highly inefficient in terms of amount of metadata writes,
- * and it puts more strain on the various btree resorting/compacting code.
- *
- * The journal is just a log of keys we've inserted; on startup we just reinsert
- * all the keys in the open journal entries. That means that when we're updating
- * a node in the btree, we can wait until a 4k block of keys fills up before
- * writing them out.
- *
- * For simplicity, we only journal updates to leaf nodes; updates to parent
- * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
- * the complexity to deal with journalling them (in particular, journal replay)
- * - updates to non leaf nodes just happen synchronously (see btree_split()).
- */
-
-#undef pr_fmt
-#ifdef __KERNEL__
-#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
-#else
-#define pr_fmt(fmt) "%s() " fmt "\n", __func__
-#endif
-
-#include <linux/backing-dev-defs.h>
-#include <linux/bug.h>
-#include <linux/bio.h>
-#include <linux/closure.h>
-#include <linux/kobject.h>
-#include <linux/list.h>
-#include <linux/math64.h>
-#include <linux/mutex.h>
-#include <linux/percpu-refcount.h>
-#include <linux/percpu-rwsem.h>
-#include <linux/refcount.h>
-#include <linux/rhashtable.h>
-#include <linux/rwsem.h>
-#include <linux/semaphore.h>
-#include <linux/seqlock.h>
-#include <linux/shrinker.h>
-#include <linux/srcu.h>
-#include <linux/types.h>
-#include <linux/workqueue.h>
-#include <linux/zstd.h>
-
-#include "bcachefs_format.h"
-#include "errcode.h"
-#include "fifo.h"
-#include "nocow_locking_types.h"
-#include "opts.h"
-#include "recovery_types.h"
-#include "sb-errors_types.h"
-#include "seqmutex.h"
-#include "util.h"
-
-#ifdef CONFIG_BCACHEFS_DEBUG
-#define BCH_WRITE_REF_DEBUG
-#endif
-
-#ifndef dynamic_fault
-#define dynamic_fault(...) 0
-#endif
-
-#define race_fault(...) dynamic_fault("bcachefs:race")
-
-#define count_event(_c, _name) this_cpu_inc((_c)->counters[BCH_COUNTER_##_name])
-
-#define trace_and_count(_c, _name, ...) \
-do { \
- count_event(_c, _name); \
- trace_##_name(__VA_ARGS__); \
-} while (0)
-
-#define bch2_fs_init_fault(name) \
- dynamic_fault("bcachefs:bch_fs_init:" name)
-#define bch2_meta_read_fault(name) \
- dynamic_fault("bcachefs:meta:read:" name)
-#define bch2_meta_write_fault(name) \
- dynamic_fault("bcachefs:meta:write:" name)
-
-#ifdef __KERNEL__
-#define BCACHEFS_LOG_PREFIX
-#endif
-
-#ifdef BCACHEFS_LOG_PREFIX
-
-#define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name)
-#define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name)
-#define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
-#define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
-#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
- "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
-
-#else
-
-#define bch2_log_msg(_c, fmt) fmt
-#define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name)
-#define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
-#define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum)
-#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
- "inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
-
-#endif
-
-#define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n")
-
-__printf(2, 3)
-void __bch2_print(struct bch_fs *c, const char *fmt, ...);
-
-#define maybe_dev_to_fs(_c) _Generic((_c), \
- struct bch_dev *: ((struct bch_dev *) (_c))->fs, \
- struct bch_fs *: (_c))
-
-#define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
-
-#define bch2_print_ratelimited(_c, ...) \
-do { \
- static DEFINE_RATELIMIT_STATE(_rs, \
- DEFAULT_RATELIMIT_INTERVAL, \
- DEFAULT_RATELIMIT_BURST); \
- \
- if (__ratelimit(&_rs)) \
- bch2_print(_c, __VA_ARGS__); \
-} while (0)
-
-#define bch_info(c, fmt, ...) \
- bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
-#define bch_notice(c, fmt, ...) \
- bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
-#define bch_warn(c, fmt, ...) \
- bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
-#define bch_warn_ratelimited(c, fmt, ...) \
- bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
-
-#define bch_err(c, fmt, ...) \
- bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
-#define bch_err_dev(ca, fmt, ...) \
- bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
-#define bch_err_dev_offset(ca, _offset, fmt, ...) \
- bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
-#define bch_err_inum(c, _inum, fmt, ...) \
- bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
-#define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \
- bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
-
-#define bch_err_ratelimited(c, fmt, ...) \
- bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
-#define bch_err_dev_ratelimited(ca, fmt, ...) \
- bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
-#define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \
- bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
-#define bch_err_inum_ratelimited(c, _inum, fmt, ...) \
- bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
-#define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \
- bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
-
-static inline bool should_print_err(int err)
-{
- return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
-}
-
-#define bch_err_fn(_c, _ret) \
-do { \
- if (should_print_err(_ret)) \
- bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
-} while (0)
-
-#define bch_err_fn_ratelimited(_c, _ret) \
-do { \
- if (should_print_err(_ret)) \
- bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
-} while (0)
-
-#define bch_err_msg(_c, _ret, _msg, ...) \
-do { \
- if (should_print_err(_ret)) \
- bch_err(_c, "%s(): error " _msg " %s", __func__, \
- ##__VA_ARGS__, bch2_err_str(_ret)); \
-} while (0)
-
-#define bch_verbose(c, fmt, ...) \
-do { \
- if ((c)->opts.verbose) \
- bch_info(c, fmt, ##__VA_ARGS__); \
-} while (0)
-
-#define pr_verbose_init(opts, fmt, ...) \
-do { \
- if (opt_get(opts, verbose)) \
- pr_info(fmt, ##__VA_ARGS__); \
-} while (0)
-
-/* Parameters that are useful for debugging, but should always be compiled in: */
-#define BCH_DEBUG_PARAMS_ALWAYS() \
- BCH_DEBUG_PARAM(key_merging_disabled, \
- "Disables merging of extents") \
- BCH_DEBUG_PARAM(btree_gc_always_rewrite, \
- "Causes mark and sweep to compact and rewrite every " \
- "btree node it traverses") \
- BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \
- "Disables rewriting of btree nodes during mark and sweep")\
- BCH_DEBUG_PARAM(btree_shrinker_disabled, \
- "Disables the shrinker callback for the btree node cache")\
- BCH_DEBUG_PARAM(verify_btree_ondisk, \
- "Reread btree nodes at various points to verify the " \
- "mergesort in the read path against modifications " \
- "done in memory") \
- BCH_DEBUG_PARAM(verify_all_btree_replicas, \
- "When reading btree nodes, read all replicas and " \
- "compare them") \
- BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \
- "Don't use the write buffer for backpointers, enabling "\
- "extra runtime checks")
-
-/* Parameters that should only be compiled in debug mode: */
-#define BCH_DEBUG_PARAMS_DEBUG() \
- BCH_DEBUG_PARAM(expensive_debug_checks, \
- "Enables various runtime debugging checks that " \
- "significantly affect performance") \
- BCH_DEBUG_PARAM(debug_check_iterators, \
- "Enables extra verification for btree iterators") \
- BCH_DEBUG_PARAM(debug_check_btree_accounting, \
- "Verify btree accounting for keys within a node") \
- BCH_DEBUG_PARAM(journal_seq_verify, \
- "Store the journal sequence number in the version " \
- "number of every btree key, and verify that btree " \
- "update ordering is preserved during recovery") \
- BCH_DEBUG_PARAM(inject_invalid_keys, \
- "Store the journal sequence number in the version " \
- "number of every btree key, and verify that btree " \
- "update ordering is preserved during recovery") \
- BCH_DEBUG_PARAM(test_alloc_startup, \
- "Force allocator startup to use the slowpath where it" \
- "can't find enough free buckets without invalidating" \
- "cached data") \
- BCH_DEBUG_PARAM(force_reconstruct_read, \
- "Force reads to use the reconstruct path, when reading" \
- "from erasure coded extents") \
- BCH_DEBUG_PARAM(test_restart_gc, \
- "Test restarting mark and sweep gc when bucket gens change")
-
-#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
-
-#ifdef CONFIG_BCACHEFS_DEBUG
-#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
-#else
-#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
-#endif
-
-#define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name;
-BCH_DEBUG_PARAMS()
-#undef BCH_DEBUG_PARAM
-
-#ifndef CONFIG_BCACHEFS_DEBUG
-#define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name;
-BCH_DEBUG_PARAMS_DEBUG()
-#undef BCH_DEBUG_PARAM
-#endif
-
-#define BCH_TIME_STATS() \
- x(btree_node_mem_alloc) \
- x(btree_node_split) \
- x(btree_node_compact) \
- x(btree_node_merge) \
- x(btree_node_sort) \
- x(btree_node_read) \
- x(btree_node_read_done) \
- x(btree_interior_update_foreground) \
- x(btree_interior_update_total) \
- x(btree_gc) \
- x(data_write) \
- x(data_read) \
- x(data_promote) \
- x(journal_flush_write) \
- x(journal_noflush_write) \
- x(journal_flush_seq) \
- x(blocked_journal_low_on_space) \
- x(blocked_journal_low_on_pin) \
- x(blocked_journal_max_in_flight) \
- x(blocked_allocate) \
- x(blocked_allocate_open_bucket) \
- x(blocked_write_buffer_full) \
- x(nocow_lock_contended)
-
-enum bch_time_stats {
-#define x(name) BCH_TIME_##name,
- BCH_TIME_STATS()
-#undef x
- BCH_TIME_STAT_NR
-};
-
-#include "alloc_types.h"
-#include "btree_types.h"
-#include "btree_write_buffer_types.h"
-#include "buckets_types.h"
-#include "buckets_waiting_for_journal_types.h"
-#include "clock_types.h"
-#include "disk_groups_types.h"
-#include "ec_types.h"
-#include "journal_types.h"
-#include "keylist_types.h"
-#include "quota_types.h"
-#include "rebalance_types.h"
-#include "replicas_types.h"
-#include "subvolume_types.h"
-#include "super_types.h"
-#include "thread_with_file_types.h"
-
-/* Number of nodes btree coalesce will try to coalesce at once */
-#define GC_MERGE_NODES 4U
-
-/* Maximum number of nodes we might need to allocate atomically: */
-#define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
-
-/* Size of the freelist we allocate btree nodes from: */
-#define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4)
-
-#define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
-
-struct btree;
-
-enum gc_phase {
- GC_PHASE_NOT_RUNNING,
- GC_PHASE_START,
- GC_PHASE_SB,
-
- GC_PHASE_BTREE_stripes,
- GC_PHASE_BTREE_extents,
- GC_PHASE_BTREE_inodes,
- GC_PHASE_BTREE_dirents,
- GC_PHASE_BTREE_xattrs,
- GC_PHASE_BTREE_alloc,
- GC_PHASE_BTREE_quotas,
- GC_PHASE_BTREE_reflink,
- GC_PHASE_BTREE_subvolumes,
- GC_PHASE_BTREE_snapshots,
- GC_PHASE_BTREE_lru,
- GC_PHASE_BTREE_freespace,
- GC_PHASE_BTREE_need_discard,
- GC_PHASE_BTREE_backpointers,
- GC_PHASE_BTREE_bucket_gens,
- GC_PHASE_BTREE_snapshot_trees,
- GC_PHASE_BTREE_deleted_inodes,
- GC_PHASE_BTREE_logged_ops,
- GC_PHASE_BTREE_rebalance_work,
-
- GC_PHASE_PENDING_DELETE,
-};
-
-struct gc_pos {
- enum gc_phase phase;
- struct bpos pos;
- unsigned level;
-};
-
-struct reflink_gc {
- u64 offset;
- u32 size;
- u32 refcount;
-};
-
-typedef GENRADIX(struct reflink_gc) reflink_gc_table;
-
-struct io_count {
- u64 sectors[2][BCH_DATA_NR];
-};
-
-struct bch_dev {
- struct kobject kobj;
- struct percpu_ref ref;
- struct completion ref_completion;
- struct percpu_ref io_ref;
- struct completion io_ref_completion;
-
- struct bch_fs *fs;
-
- u8 dev_idx;
- /*
- * Cached version of this device's member info from superblock
- * Committed by bch2_write_super() -> bch_fs_mi_update()
- */
- struct bch_member_cpu mi;
- atomic64_t errors[BCH_MEMBER_ERROR_NR];
-
- __uuid_t uuid;
- char name[BDEVNAME_SIZE];
-
- struct bch_sb_handle disk_sb;
- struct bch_sb *sb_read_scratch;
- int sb_write_error;
- dev_t dev;
- atomic_t flush_seq;
-
- struct bch_devs_mask self;
-
- /* biosets used in cloned bios for writing multiple replicas */
- struct bio_set replica_set;
-
- /*
- * Buckets:
- * Per-bucket arrays are protected by c->mark_lock, bucket_lock and
- * gc_lock, for device resize - holding any is sufficient for access:
- * Or rcu_read_lock(), but only for ptr_stale():
- */
- struct bucket_array __rcu *buckets_gc;
- struct bucket_gens __rcu *bucket_gens;
- u8 *oldest_gen;
- unsigned long *buckets_nouse;
- struct rw_semaphore bucket_lock;
-
- struct bch_dev_usage *usage_base;
- struct bch_dev_usage __percpu *usage[JOURNAL_BUF_NR];
- struct bch_dev_usage __percpu *usage_gc;
-
- /* Allocator: */
- u64 new_fs_bucket_idx;
- u64 alloc_cursor;
-
- unsigned nr_open_buckets;
- unsigned nr_btree_reserve;
-
- size_t inc_gen_needs_gc;
- size_t inc_gen_really_needs_gc;
- size_t buckets_waiting_on_journal;
-
- atomic64_t rebalance_work;
-
- struct journal_device journal;
- u64 prev_journal_sector;
-
- struct work_struct io_error_work;
-
- /* The rest of this all shows up in sysfs */
- atomic64_t cur_latency[2];
- struct bch2_time_stats io_latency[2];
-
-#define CONGESTED_MAX 1024
- atomic_t congested;
- u64 congested_last;
-
- struct io_count __percpu *io_done;
-};
-
-/*
- * initial_gc_unfixed
- * error
- * topology error
- */
-
-#define BCH_FS_FLAGS() \
- x(started) \
- x(may_go_rw) \
- x(rw) \
- x(was_rw) \
- x(stopping) \
- x(emergency_ro) \
- x(going_ro) \
- x(write_disable_complete) \
- x(clean_shutdown) \
- x(fsck_running) \
- x(initial_gc_unfixed) \
- x(need_another_gc) \
- x(need_delete_dead_snapshots) \
- x(error) \
- x(topology_error) \
- x(errors_fixed) \
- x(errors_not_fixed)
-
-enum bch_fs_flags {
-#define x(n) BCH_FS_##n,
- BCH_FS_FLAGS()
-#undef x
-};
-
-struct btree_debug {
- unsigned id;
-};
-
-#define BCH_TRANSACTIONS_NR 128
-
-struct btree_transaction_stats {
- struct bch2_time_stats duration;
- struct bch2_time_stats lock_hold_times;
- struct mutex lock;
- unsigned nr_max_paths;
- unsigned journal_entries_size;
- unsigned max_mem;
- char *max_paths_text;
-};
-
-struct bch_fs_pcpu {
- u64 sectors_available;
-};
-
-struct journal_seq_blacklist_table {
- size_t nr;
- struct journal_seq_blacklist_table_entry {
- u64 start;
- u64 end;
- bool dirty;
- } entries[];
-};
-
-struct journal_keys {
- struct journal_key {
- u64 journal_seq;
- u32 journal_offset;
- enum btree_id btree_id:8;
- unsigned level:8;
- bool allocated;
- bool overwritten;
- struct bkey_i *k;
- } *d;
- /*
- * Gap buffer: instead of all the empty space in the array being at the
- * end of the buffer - from @nr to @size - the empty space is at @gap.
- * This means that sequential insertions are O(n) instead of O(n^2).
- */
- size_t gap;
- size_t nr;
- size_t size;
- atomic_t ref;
- bool initial_ref_held;
-};
-
-struct btree_trans_buf {
- struct btree_trans *trans;
-};
-
-#define REPLICAS_DELTA_LIST_MAX (1U << 16)
-
-#define BCACHEFS_ROOT_SUBVOL_INUM \
- ((subvol_inum) { BCACHEFS_ROOT_SUBVOL, BCACHEFS_ROOT_INO })
-
-#define BCH_WRITE_REFS() \
- x(trans) \
- x(write) \
- x(promote) \
- x(node_rewrite) \
- x(stripe_create) \
- x(stripe_delete) \
- x(reflink) \
- x(fallocate) \
- x(discard) \
- x(invalidate) \
- x(delete_dead_snapshots) \
- x(snapshot_delete_pagecache) \
- x(sysfs) \
- x(btree_write_buffer)
-
-enum bch_write_ref {
-#define x(n) BCH_WRITE_REF_##n,
- BCH_WRITE_REFS()
-#undef x
- BCH_WRITE_REF_NR,
-};
-
-struct bch_fs {
- struct closure cl;
-
- struct list_head list;
- struct kobject kobj;
- struct kobject counters_kobj;
- struct kobject internal;
- struct kobject opts_dir;
- struct kobject time_stats;
- unsigned long flags;
-
- int minor;
- struct device *chardev;
- struct super_block *vfs_sb;
- dev_t dev;
- char name[40];
- struct stdio_redirect *stdio;
- struct task_struct *stdio_filter;
-
- /* ro/rw, add/remove/resize devices: */
- struct rw_semaphore state_lock;
-
- /* Counts outstanding writes, for clean transition to read-only */
-#ifdef BCH_WRITE_REF_DEBUG
- atomic_long_t writes[BCH_WRITE_REF_NR];
-#else
- struct percpu_ref writes;
-#endif
- /*
- * Analagous to c->writes, for asynchronous ops that don't necessarily
- * need fs to be read-write
- */
- refcount_t ro_ref;
- wait_queue_head_t ro_ref_wait;
-
- struct work_struct read_only_work;
-
- struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX];
-
- struct bch_replicas_cpu replicas;
- struct bch_replicas_cpu replicas_gc;
- struct mutex replicas_gc_lock;
- mempool_t replicas_delta_pool;
-
- struct journal_entry_res btree_root_journal_res;
- struct journal_entry_res replicas_journal_res;
- struct journal_entry_res clock_journal_res;
- struct journal_entry_res dev_usage_journal_res;
-
- struct bch_disk_groups_cpu __rcu *disk_groups;
-
- struct bch_opts opts;
-
- /* Updated by bch2_sb_update():*/
- struct {
- __uuid_t uuid;
- __uuid_t user_uuid;
-
- u16 version;
- u16 version_min;
- u16 version_upgrade_complete;
-
- u8 nr_devices;
- u8 clean;
-
- u8 encryption_type;
-
- u64 time_base_lo;
- u32 time_base_hi;
- unsigned time_units_per_sec;
- unsigned nsec_per_time_unit;
- u64 features;
- u64 compat;
- unsigned long errors_silent[BITS_TO_LONGS(BCH_SB_ERR_MAX)];
- } sb;
-
-
- struct bch_sb_handle disk_sb;
-
- unsigned short block_bits; /* ilog2(block_size) */
-
- u16 btree_foreground_merge_threshold;
-
- struct closure sb_write;
- struct mutex sb_lock;
-
- /* snapshot.c: */
- struct snapshot_table __rcu *snapshots;
- size_t snapshot_table_size;
- struct mutex snapshot_table_lock;
- struct rw_semaphore snapshot_create_lock;
-
- struct work_struct snapshot_delete_work;
- struct work_struct snapshot_wait_for_pagecache_and_delete_work;
- snapshot_id_list snapshots_unlinked;
- struct mutex snapshots_unlinked_lock;
-
- /* BTREE CACHE */
- struct bio_set btree_bio;
- struct workqueue_struct *io_complete_wq;
-
- struct btree_root btree_roots_known[BTREE_ID_NR];
- DARRAY(struct btree_root) btree_roots_extra;
- struct mutex btree_root_lock;
-
- struct btree_cache btree_cache;
-
- /*
- * Cache of allocated btree nodes - if we allocate a btree node and
- * don't use it, if we free it that space can't be reused until going
- * _all_ the way through the allocator (which exposes us to a livelock
- * when allocating btree reserves fail halfway through) - instead, we
- * can stick them here:
- */
- struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2];
- unsigned btree_reserve_cache_nr;
- struct mutex btree_reserve_cache_lock;
-
- mempool_t btree_interior_update_pool;
- struct list_head btree_interior_update_list;
- struct list_head btree_interior_updates_unwritten;
- struct mutex btree_interior_update_lock;
- struct closure_waitlist btree_interior_update_wait;
-
- struct workqueue_struct *btree_interior_update_worker;
- struct work_struct btree_interior_update_work;
-
- struct list_head pending_node_rewrites;
- struct mutex pending_node_rewrites_lock;
-
- /* btree_io.c: */
- spinlock_t btree_write_error_lock;
- struct btree_write_stats {
- atomic64_t nr;
- atomic64_t bytes;
- } btree_write_stats[BTREE_WRITE_TYPE_NR];
-
- /* btree_iter.c: */
- struct seqmutex btree_trans_lock;
- struct list_head btree_trans_list;
- mempool_t btree_trans_pool;
- mempool_t btree_trans_mem_pool;
- struct btree_trans_buf __percpu *btree_trans_bufs;
-
- struct srcu_struct btree_trans_barrier;
- bool btree_trans_barrier_initialized;
-
- struct btree_key_cache btree_key_cache;
- unsigned btree_key_cache_btrees;
-
- struct btree_write_buffer btree_write_buffer;
-
- struct workqueue_struct *btree_update_wq;
- struct workqueue_struct *btree_io_complete_wq;
- /* copygc needs its own workqueue for index updates.. */
- struct workqueue_struct *copygc_wq;
- /*
- * Use a dedicated wq for write ref holder tasks. Required to avoid
- * dependency problems with other wq tasks that can block on ref
- * draining, such as read-only transition.
- */
- struct workqueue_struct *write_ref_wq;
-
- /* ALLOCATION */
- struct bch_devs_mask rw_devs[BCH_DATA_NR];
-
- u64 capacity; /* sectors */
-
- /*
- * When capacity _decreases_ (due to a disk being removed), we
- * increment capacity_gen - this invalidates outstanding reservations
- * and forces them to be revalidated
- */
- u32 capacity_gen;
- unsigned bucket_size_max;
-
- atomic64_t sectors_available;
- struct mutex sectors_available_lock;
-
- struct bch_fs_pcpu __percpu *pcpu;
-
- struct percpu_rw_semaphore mark_lock;
-
- seqcount_t usage_lock;
- struct bch_fs_usage *usage_base;
- struct bch_fs_usage __percpu *usage[JOURNAL_BUF_NR];
- struct bch_fs_usage __percpu *usage_gc;
- u64 __percpu *online_reserved;
-
- /* single element mempool: */
- struct mutex usage_scratch_lock;
- struct bch_fs_usage_online *usage_scratch;
-
- struct io_clock io_clock[2];
-
- /* JOURNAL SEQ BLACKLIST */
- struct journal_seq_blacklist_table *
- journal_seq_blacklist_table;
- struct work_struct journal_seq_blacklist_gc_work;
-
- /* ALLOCATOR */
- spinlock_t freelist_lock;
- struct closure_waitlist freelist_wait;
- u64 blocked_allocate;
- u64 blocked_allocate_open_bucket;
-
- open_bucket_idx_t open_buckets_freelist;
- open_bucket_idx_t open_buckets_nr_free;
- struct closure_waitlist open_buckets_wait;
- struct open_bucket open_buckets[OPEN_BUCKETS_COUNT];
- open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT];
-
- open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT];
- open_bucket_idx_t open_buckets_partial_nr;
-
- struct write_point btree_write_point;
- struct write_point rebalance_write_point;
-
- struct write_point write_points[WRITE_POINT_MAX];
- struct hlist_head write_points_hash[WRITE_POINT_HASH_NR];
- struct mutex write_points_hash_lock;
- unsigned write_points_nr;
-
- struct buckets_waiting_for_journal buckets_waiting_for_journal;
- struct work_struct discard_work;
- struct work_struct invalidate_work;
-
- /* GARBAGE COLLECTION */
- struct task_struct *gc_thread;
- atomic_t kick_gc;
- unsigned long gc_count;
-
- enum btree_id gc_gens_btree;
- struct bpos gc_gens_pos;
-
- /*
- * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
- * has been marked by GC.
- *
- * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.)
- *
- * Protected by gc_pos_lock. Only written to by GC thread, so GC thread
- * can read without a lock.
- */
- seqcount_t gc_pos_lock;
- struct gc_pos gc_pos;
-
- /*
- * The allocation code needs gc_mark in struct bucket to be correct, but
- * it's not while a gc is in progress.
- */
- struct rw_semaphore gc_lock;
- struct mutex gc_gens_lock;
-
- /* IO PATH */
- struct semaphore io_in_flight;
- struct bio_set bio_read;
- struct bio_set bio_read_split;
- struct bio_set bio_write;
- struct mutex bio_bounce_pages_lock;
- mempool_t bio_bounce_pages;
- struct bucket_nocow_lock_table
- nocow_locks;
- struct rhashtable promote_table;
-
- mempool_t compression_bounce[2];
- mempool_t compress_workspace[BCH_COMPRESSION_TYPE_NR];
- mempool_t decompress_workspace;
- size_t zstd_workspace_size;
-
- struct crypto_shash *sha256;
- struct crypto_sync_skcipher *chacha20;
- struct crypto_shash *poly1305;
-
- atomic64_t key_version;
-
- mempool_t large_bkey_pool;
-
- /* MOVE.C */
- struct list_head moving_context_list;
- struct mutex moving_context_lock;
-
- /* REBALANCE */
- struct bch_fs_rebalance rebalance;
-
- /* COPYGC */
- struct task_struct *copygc_thread;
- struct write_point copygc_write_point;
- s64 copygc_wait_at;
- s64 copygc_wait;
- bool copygc_running;
- wait_queue_head_t copygc_running_wq;
-
- /* STRIPES: */
- GENRADIX(struct stripe) stripes;
- GENRADIX(struct gc_stripe) gc_stripes;
-
- struct hlist_head ec_stripes_new[32];
- spinlock_t ec_stripes_new_lock;
-
- ec_stripes_heap ec_stripes_heap;
- struct mutex ec_stripes_heap_lock;
-
- /* ERASURE CODING */
- struct list_head ec_stripe_head_list;
- struct mutex ec_stripe_head_lock;
-
- struct list_head ec_stripe_new_list;
- struct mutex ec_stripe_new_lock;
- wait_queue_head_t ec_stripe_new_wait;
-
- struct work_struct ec_stripe_create_work;
- u64 ec_stripe_hint;
-
- struct work_struct ec_stripe_delete_work;
-
- struct bio_set ec_bioset;
-
- /* REFLINK */
- reflink_gc_table reflink_gc_table;
- size_t reflink_gc_nr;
-
- /* fs.c */
- struct list_head vfs_inodes_list;
- struct mutex vfs_inodes_lock;
-
- /* VFS IO PATH - fs-io.c */
- struct bio_set writepage_bioset;
- struct bio_set dio_write_bioset;
- struct bio_set dio_read_bioset;
- struct bio_set nocow_flush_bioset;
-
- /* QUOTAS */
- struct bch_memquota_type quotas[QTYP_NR];
-
- /* RECOVERY */
- u64 journal_replay_seq_start;
- u64 journal_replay_seq_end;
- /*
- * Two different uses:
- * "Has this fsck pass?" - i.e. should this type of error be an
- * emergency read-only
- * And, in certain situations fsck will rewind to an earlier pass: used
- * for signaling to the toplevel code which pass we want to run now.
- */
- enum bch_recovery_pass curr_recovery_pass;
- /* bitmap of explicitly enabled recovery passes: */
- u64 recovery_passes_explicit;
- /* bitmask of recovery passes that we actually ran */
- u64 recovery_passes_complete;
- /* never rewinds version of curr_recovery_pass */
- enum bch_recovery_pass recovery_pass_done;
- struct semaphore online_fsck_mutex;
-
- /* DEBUG JUNK */
- struct dentry *fs_debug_dir;
- struct dentry *btree_debug_dir;
- struct btree_debug btree_debug[BTREE_ID_NR];
- struct btree *verify_data;
- struct btree_node *verify_ondisk;
- struct mutex verify_lock;
-
- u64 *unused_inode_hints;
- unsigned inode_shard_bits;
-
- /*
- * A btree node on disk could have too many bsets for an iterator to fit
- * on the stack - have to dynamically allocate them
- */
- mempool_t fill_iter;
-
- mempool_t btree_bounce_pool;
-
- struct journal journal;
- GENRADIX(struct journal_replay *) journal_entries;
- u64 journal_entries_base_seq;
- struct journal_keys journal_keys;
- struct list_head journal_iters;
-
- u64 last_bucket_seq_cleanup;
-
- u64 counters_on_mount[BCH_COUNTER_NR];
- u64 __percpu *counters;
-
- unsigned btree_gc_periodic:1;
- unsigned copy_gc_enabled:1;
- bool promote_whole_extents;
-
- struct bch2_time_stats times[BCH_TIME_STAT_NR];
-
- struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR];
-
- /* ERRORS */
- struct list_head fsck_error_msgs;
- struct mutex fsck_error_msgs_lock;
- bool fsck_alloc_msgs_err;
-
- bch_sb_errors_cpu fsck_error_counts;
- struct mutex fsck_error_counts_lock;
-};
-
-extern struct wait_queue_head bch2_read_only_wait;
-
-static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref)
-{
-#ifdef BCH_WRITE_REF_DEBUG
- atomic_long_inc(&c->writes[ref]);
-#else
- percpu_ref_get(&c->writes);
-#endif
-}
-
-static inline bool __bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
-{
-#ifdef BCH_WRITE_REF_DEBUG
- return !test_bit(BCH_FS_going_ro, &c->flags) &&
- atomic_long_inc_not_zero(&c->writes[ref]);
-#else
- return percpu_ref_tryget(&c->writes);
-#endif
-}
-
-static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref)
-{
-#ifdef BCH_WRITE_REF_DEBUG
- return !test_bit(BCH_FS_going_ro, &c->flags) &&
- atomic_long_inc_not_zero(&c->writes[ref]);
-#else
- return percpu_ref_tryget_live(&c->writes);
-#endif
-}
-
-static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref)
-{
-#ifdef BCH_WRITE_REF_DEBUG
- long v = atomic_long_dec_return(&c->writes[ref]);
-
- BUG_ON(v < 0);
- if (v)
- return;
- for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
- if (atomic_long_read(&c->writes[i]))
- return;
-
- set_bit(BCH_FS_write_disable_complete, &c->flags);
- wake_up(&bch2_read_only_wait);
-#else
- percpu_ref_put(&c->writes);
-#endif
-}
-
-static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
-{
- if (test_bit(BCH_FS_stopping, &c->flags))
- return false;
-
- return refcount_inc_not_zero(&c->ro_ref);
-}
-
-static inline void bch2_ro_ref_put(struct bch_fs *c)
-{
- if (refcount_dec_and_test(&c->ro_ref))
- wake_up(&c->ro_ref_wait);
-}
-
-static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
-{
-#ifndef NO_BCACHEFS_FS
- if (c->vfs_sb)
- c->vfs_sb->s_bdi->ra_pages = ra_pages;
-#endif
-}
-
-static inline unsigned bucket_bytes(const struct bch_dev *ca)
-{
- return ca->mi.bucket_size << 9;
-}
-
-static inline unsigned block_bytes(const struct bch_fs *c)
-{
- return c->opts.block_size;
-}
-
-static inline unsigned block_sectors(const struct bch_fs *c)
-{
- return c->opts.block_size >> 9;
-}
-
-static inline size_t btree_sectors(const struct bch_fs *c)
-{
- return c->opts.btree_node_size >> 9;
-}
-
-static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree)
-{
- return c->btree_key_cache_btrees & (1U << btree);
-}
-
-static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
-{
- struct timespec64 t;
- s32 rem;
-
- time += c->sb.time_base_lo;
-
- t.tv_sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
- t.tv_nsec = rem * c->sb.nsec_per_time_unit;
- return t;
-}
-
-static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
-{
- return (ts.tv_sec * c->sb.time_units_per_sec +
- (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
-}
-
-static inline s64 bch2_current_time(const struct bch_fs *c)
-{
- struct timespec64 now;
-
- ktime_get_coarse_real_ts64(&now);
- return timespec_to_bch2_time(c, now);
-}
-
-static inline bool bch2_dev_exists2(const struct bch_fs *c, unsigned dev)
-{
- return dev < c->sb.nr_devices && c->devs[dev];
-}
-
-static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
-{
- struct stdio_redirect *stdio = c->stdio;
-
- if (c->stdio_filter && c->stdio_filter != current)
- stdio = NULL;
- return stdio;
-}
-
-#define BKEY_PADDED_ONSTACK(key, pad) \
- struct { struct bkey_i key; __u64 key ## _pad[pad]; }
-
-#endif /* _BCACHEFS_H */