summaryrefslogtreecommitdiff
path: root/c_src/raid/int.c
diff options
context:
space:
mode:
Diffstat (limited to 'c_src/raid/int.c')
-rw-r--r--c_src/raid/int.c556
1 files changed, 556 insertions, 0 deletions
diff --git a/c_src/raid/int.c b/c_src/raid/int.c
new file mode 100644
index 00000000..e16332a5
--- /dev/null
+++ b/c_src/raid/int.c
@@ -0,0 +1,556 @@
+/*
+ * Copyright (C) 2013 Andrea Mazzoleni
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include "internal.h"
+#include "gf.h"
+
+/*
+ * GEN1 (RAID5 with xor) 32bit C implementation
+ */
+void raid_gen1_int32(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ int d, l;
+ size_t i;
+
+ uint32_t p0;
+ uint32_t p1;
+
+ l = nd - 1;
+ p = v[nd];
+
+ for (i = 0; i < size; i += 8) {
+ p0 = v_32(v[l][i]);
+ p1 = v_32(v[l][i + 4]);
+ for (d = l - 1; d >= 0; --d) {
+ p0 ^= v_32(v[d][i]);
+ p1 ^= v_32(v[d][i + 4]);
+ }
+ v_32(p[i]) = p0;
+ v_32(p[i + 4]) = p1;
+ }
+}
+
+/*
+ * GEN1 (RAID5 with xor) 64bit C implementation
+ */
+void raid_gen1_int64(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ int d, l;
+ size_t i;
+
+ uint64_t p0;
+ uint64_t p1;
+
+ l = nd - 1;
+ p = v[nd];
+
+ for (i = 0; i < size; i += 16) {
+ p0 = v_64(v[l][i]);
+ p1 = v_64(v[l][i + 8]);
+ for (d = l - 1; d >= 0; --d) {
+ p0 ^= v_64(v[d][i]);
+ p1 ^= v_64(v[d][i + 8]);
+ }
+ v_64(p[i]) = p0;
+ v_64(p[i + 8]) = p1;
+ }
+}
+
+/*
+ * GEN2 (RAID6 with powers of 2) 32bit C implementation
+ */
+void raid_gen2_int32(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *q;
+ int d, l;
+ size_t i;
+
+ uint32_t d0, q0, p0;
+ uint32_t d1, q1, p1;
+
+ l = nd - 1;
+ p = v[nd];
+ q = v[nd + 1];
+
+ for (i = 0; i < size; i += 8) {
+ q0 = p0 = v_32(v[l][i]);
+ q1 = p1 = v_32(v[l][i + 4]);
+ for (d = l - 1; d >= 0; --d) {
+ d0 = v_32(v[d][i]);
+ d1 = v_32(v[d][i + 4]);
+
+ p0 ^= d0;
+ p1 ^= d1;
+
+ q0 = x2_32(q0);
+ q1 = x2_32(q1);
+
+ q0 ^= d0;
+ q1 ^= d1;
+ }
+ v_32(p[i]) = p0;
+ v_32(p[i + 4]) = p1;
+ v_32(q[i]) = q0;
+ v_32(q[i + 4]) = q1;
+ }
+}
+
+/*
+ * GEN2 (RAID6 with powers of 2) 64bit C implementation
+ */
+void raid_gen2_int64(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *q;
+ int d, l;
+ size_t i;
+
+ uint64_t d0, q0, p0;
+ uint64_t d1, q1, p1;
+
+ l = nd - 1;
+ p = v[nd];
+ q = v[nd + 1];
+
+ for (i = 0; i < size; i += 16) {
+ q0 = p0 = v_64(v[l][i]);
+ q1 = p1 = v_64(v[l][i + 8]);
+ for (d = l - 1; d >= 0; --d) {
+ d0 = v_64(v[d][i]);
+ d1 = v_64(v[d][i + 8]);
+
+ p0 ^= d0;
+ p1 ^= d1;
+
+ q0 = x2_64(q0);
+ q1 = x2_64(q1);
+
+ q0 ^= d0;
+ q1 ^= d1;
+ }
+ v_64(p[i]) = p0;
+ v_64(p[i + 8]) = p1;
+ v_64(q[i]) = q0;
+ v_64(q[i + 8]) = q1;
+ }
+}
+
+/*
+ * GEN3 (triple parity with Cauchy matrix) 8bit C implementation
+ *
+ * Note that instead of a generic multiplication table, likely resulting
+ * in multiple cache misses, a precomputed table could be used.
+ * But this is only a kind of reference function, and we are not really
+ * interested in speed.
+ */
+void raid_gen3_int8(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *q;
+ uint8_t *r;
+ int d, l;
+ size_t i;
+
+ uint8_t d0, r0, q0, p0;
+
+ l = nd - 1;
+ p = v[nd];
+ q = v[nd + 1];
+ r = v[nd + 2];
+
+ for (i = 0; i < size; i += 1) {
+ p0 = q0 = r0 = 0;
+ for (d = l; d > 0; --d) {
+ d0 = v_8(v[d][i]);
+
+ p0 ^= d0;
+ q0 ^= gfmul[d0][gfgen[1][d]];
+ r0 ^= gfmul[d0][gfgen[2][d]];
+ }
+
+ /* first disk with all coefficients at 1 */
+ d0 = v_8(v[0][i]);
+
+ p0 ^= d0;
+ q0 ^= d0;
+ r0 ^= d0;
+
+ v_8(p[i]) = p0;
+ v_8(q[i]) = q0;
+ v_8(r[i]) = r0;
+ }
+}
+
+/*
+ * GEN4 (quad parity with Cauchy matrix) 8bit C implementation
+ *
+ * Note that instead of a generic multiplication table, likely resulting
+ * in multiple cache misses, a precomputed table could be used.
+ * But this is only a kind of reference function, and we are not really
+ * interested in speed.
+ */
+void raid_gen4_int8(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *q;
+ uint8_t *r;
+ uint8_t *s;
+ int d, l;
+ size_t i;
+
+ uint8_t d0, s0, r0, q0, p0;
+
+ l = nd - 1;
+ p = v[nd];
+ q = v[nd + 1];
+ r = v[nd + 2];
+ s = v[nd + 3];
+
+ for (i = 0; i < size; i += 1) {
+ p0 = q0 = r0 = s0 = 0;
+ for (d = l; d > 0; --d) {
+ d0 = v_8(v[d][i]);
+
+ p0 ^= d0;
+ q0 ^= gfmul[d0][gfgen[1][d]];
+ r0 ^= gfmul[d0][gfgen[2][d]];
+ s0 ^= gfmul[d0][gfgen[3][d]];
+ }
+
+ /* first disk with all coefficients at 1 */
+ d0 = v_8(v[0][i]);
+
+ p0 ^= d0;
+ q0 ^= d0;
+ r0 ^= d0;
+ s0 ^= d0;
+
+ v_8(p[i]) = p0;
+ v_8(q[i]) = q0;
+ v_8(r[i]) = r0;
+ v_8(s[i]) = s0;
+ }
+}
+
+/*
+ * GEN5 (penta parity with Cauchy matrix) 8bit C implementation
+ *
+ * Note that instead of a generic multiplication table, likely resulting
+ * in multiple cache misses, a precomputed table could be used.
+ * But this is only a kind of reference function, and we are not really
+ * interested in speed.
+ */
+void raid_gen5_int8(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *q;
+ uint8_t *r;
+ uint8_t *s;
+ uint8_t *t;
+ int d, l;
+ size_t i;
+
+ uint8_t d0, t0, s0, r0, q0, p0;
+
+ l = nd - 1;
+ p = v[nd];
+ q = v[nd + 1];
+ r = v[nd + 2];
+ s = v[nd + 3];
+ t = v[nd + 4];
+
+ for (i = 0; i < size; i += 1) {
+ p0 = q0 = r0 = s0 = t0 = 0;
+ for (d = l; d > 0; --d) {
+ d0 = v_8(v[d][i]);
+
+ p0 ^= d0;
+ q0 ^= gfmul[d0][gfgen[1][d]];
+ r0 ^= gfmul[d0][gfgen[2][d]];
+ s0 ^= gfmul[d0][gfgen[3][d]];
+ t0 ^= gfmul[d0][gfgen[4][d]];
+ }
+
+ /* first disk with all coefficients at 1 */
+ d0 = v_8(v[0][i]);
+
+ p0 ^= d0;
+ q0 ^= d0;
+ r0 ^= d0;
+ s0 ^= d0;
+ t0 ^= d0;
+
+ v_8(p[i]) = p0;
+ v_8(q[i]) = q0;
+ v_8(r[i]) = r0;
+ v_8(s[i]) = s0;
+ v_8(t[i]) = t0;
+ }
+}
+
+/*
+ * GEN6 (hexa parity with Cauchy matrix) 8bit C implementation
+ *
+ * Note that instead of a generic multiplication table, likely resulting
+ * in multiple cache misses, a precomputed table could be used.
+ * But this is only a kind of reference function, and we are not really
+ * interested in speed.
+ */
+void raid_gen6_int8(int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *q;
+ uint8_t *r;
+ uint8_t *s;
+ uint8_t *t;
+ uint8_t *u;
+ int d, l;
+ size_t i;
+
+ uint8_t d0, u0, t0, s0, r0, q0, p0;
+
+ l = nd - 1;
+ p = v[nd];
+ q = v[nd + 1];
+ r = v[nd + 2];
+ s = v[nd + 3];
+ t = v[nd + 4];
+ u = v[nd + 5];
+
+ for (i = 0; i < size; i += 1) {
+ p0 = q0 = r0 = s0 = t0 = u0 = 0;
+ for (d = l; d > 0; --d) {
+ d0 = v_8(v[d][i]);
+
+ p0 ^= d0;
+ q0 ^= gfmul[d0][gfgen[1][d]];
+ r0 ^= gfmul[d0][gfgen[2][d]];
+ s0 ^= gfmul[d0][gfgen[3][d]];
+ t0 ^= gfmul[d0][gfgen[4][d]];
+ u0 ^= gfmul[d0][gfgen[5][d]];
+ }
+
+ /* first disk with all coefficients at 1 */
+ d0 = v_8(v[0][i]);
+
+ p0 ^= d0;
+ q0 ^= d0;
+ r0 ^= d0;
+ s0 ^= d0;
+ t0 ^= d0;
+ u0 ^= d0;
+
+ v_8(p[i]) = p0;
+ v_8(q[i]) = q0;
+ v_8(r[i]) = r0;
+ v_8(s[i]) = s0;
+ v_8(t[i]) = t0;
+ v_8(u[i]) = u0;
+ }
+}
+
+/*
+ * Recover failure of one data block at index id[0] using parity at index
+ * ip[0] for any RAID level.
+ *
+ * Starting from the equation:
+ *
+ * Pd = A[ip[0],id[0]] * Dx
+ *
+ * and solving we get:
+ *
+ * Dx = A[ip[0],id[0]]^-1 * Pd
+ */
+void raid_rec1_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *pa;
+ const uint8_t *T;
+ uint8_t G;
+ uint8_t V;
+ size_t i;
+
+ (void)nr; /* unused, it's always 1 */
+
+ /* if it's RAID5 uses the faster function */
+ if (ip[0] == 0) {
+ raid_rec1of1(id, nd, size, vv);
+ return;
+ }
+
+ /* setup the coefficients matrix */
+ G = A(ip[0], id[0]);
+
+ /* invert it to solve the system of linear equations */
+ V = inv(G);
+
+ /* get multiplication tables */
+ T = table(V);
+
+ /* compute delta parity */
+ raid_delta_gen(1, id, ip, nd, size, vv);
+
+ p = v[nd + ip[0]];
+ pa = v[id[0]];
+
+ for (i = 0; i < size; ++i) {
+ /* delta */
+ uint8_t Pd = p[i] ^ pa[i];
+
+ /* reconstruct */
+ pa[i] = T[Pd];
+ }
+}
+
+/*
+ * Recover failure of two data blocks at indexes id[0],id[1] using parity at
+ * indexes ip[0],ip[1] for any RAID level.
+ *
+ * Starting from the equations:
+ *
+ * Pd = A[ip[0],id[0]] * Dx + A[ip[0],id[1]] * Dy
+ * Qd = A[ip[1],id[0]] * Dx + A[ip[1],id[1]] * Dy
+ *
+ * we solve inverting the coefficients matrix.
+ */
+void raid_rec2_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p;
+ uint8_t *pa;
+ uint8_t *q;
+ uint8_t *qa;
+ const int N = 2;
+ const uint8_t *T[N][N];
+ uint8_t G[N * N];
+ uint8_t V[N * N];
+ size_t i;
+ int j, k;
+
+ (void)nr; /* unused, it's always 2 */
+
+ /* if it's RAID6 recovering with P and Q uses the faster function */
+ if (ip[0] == 0 && ip[1] == 1) {
+ raid_rec2of2_int8(id, ip, nd, size, vv);
+ return;
+ }
+
+ /* setup the coefficients matrix */
+ for (j = 0; j < N; ++j)
+ for (k = 0; k < N; ++k)
+ G[j * N + k] = A(ip[j], id[k]);
+
+ /* invert it to solve the system of linear equations */
+ raid_invert(G, V, N);
+
+ /* get multiplication tables */
+ for (j = 0; j < N; ++j)
+ for (k = 0; k < N; ++k)
+ T[j][k] = table(V[j * N + k]);
+
+ /* compute delta parity */
+ raid_delta_gen(2, id, ip, nd, size, vv);
+
+ p = v[nd + ip[0]];
+ q = v[nd + ip[1]];
+ pa = v[id[0]];
+ qa = v[id[1]];
+
+ for (i = 0; i < size; ++i) {
+ /* delta */
+ uint8_t Pd = p[i] ^ pa[i];
+ uint8_t Qd = q[i] ^ qa[i];
+
+ /* reconstruct */
+ pa[i] = T[0][0][Pd] ^ T[0][1][Qd];
+ qa[i] = T[1][0][Pd] ^ T[1][1][Qd];
+ }
+}
+
+/*
+ * Recover failure of N data blocks at indexes id[N] using parity at indexes
+ * ip[N] for any RAID level.
+ *
+ * Starting from the N equations, with 0<=i<N :
+ *
+ * PD[i] = sum(A[ip[i],id[j]] * D[i]) 0<=j<N
+ *
+ * we solve inverting the coefficients matrix.
+ *
+ * Note that referring at previous equations you have:
+ * PD[0] = Pd, PD[1] = Qd, PD[2] = Rd, ...
+ * D[0] = Dx, D[1] = Dy, D[2] = Dz, ...
+ */
+void raid_recX_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv)
+{
+ uint8_t **v = (uint8_t **)vv;
+ uint8_t *p[RAID_PARITY_MAX];
+ uint8_t *pa[RAID_PARITY_MAX];
+ const uint8_t *T[RAID_PARITY_MAX][RAID_PARITY_MAX];
+ uint8_t G[RAID_PARITY_MAX * RAID_PARITY_MAX];
+ uint8_t V[RAID_PARITY_MAX * RAID_PARITY_MAX];
+ size_t i;
+ int j, k;
+
+ /* setup the coefficients matrix */
+ for (j = 0; j < nr; ++j)
+ for (k = 0; k < nr; ++k)
+ G[j * nr + k] = A(ip[j], id[k]);
+
+ /* invert it to solve the system of linear equations */
+ raid_invert(G, V, nr);
+
+ /* get multiplication tables */
+ for (j = 0; j < nr; ++j)
+ for (k = 0; k < nr; ++k)
+ T[j][k] = table(V[j * nr + k]);
+
+ /* compute delta parity */
+ raid_delta_gen(nr, id, ip, nd, size, vv);
+
+ for (j = 0; j < nr; ++j) {
+ p[j] = v[nd + ip[j]];
+ pa[j] = v[id[j]];
+ }
+
+ for (i = 0; i < size; ++i) {
+ uint8_t PD[RAID_PARITY_MAX];
+
+ /* delta */
+ for (j = 0; j < nr; ++j)
+ PD[j] = p[j][i] ^ pa[j][i];
+
+ /* reconstruct */
+ for (j = 0; j < nr; ++j) {
+ uint8_t b = 0;
+
+ for (k = 0; k < nr; ++k)
+ b ^= T[j][k][PD[k]];
+ pa[j][i] = b;
+ }
+ }
+}
+