summaryrefslogtreecommitdiff
path: root/libbcache/btree_update.c
diff options
context:
space:
mode:
Diffstat (limited to 'libbcache/btree_update.c')
-rw-r--r--libbcache/btree_update.c2343
1 files changed, 2343 insertions, 0 deletions
diff --git a/libbcache/btree_update.c b/libbcache/btree_update.c
new file mode 100644
index 00000000..95406a44
--- /dev/null
+++ b/libbcache/btree_update.c
@@ -0,0 +1,2343 @@
+
+#include "bcache.h"
+#include "alloc.h"
+#include "bkey_methods.h"
+#include "btree_cache.h"
+#include "btree_gc.h"
+#include "btree_update.h"
+#include "btree_io.h"
+#include "btree_iter.h"
+#include "btree_locking.h"
+#include "buckets.h"
+#include "extents.h"
+#include "journal.h"
+#include "keylist.h"
+#include "super.h"
+
+#include <linux/random.h>
+#include <linux/sort.h>
+#include <trace/events/bcache.h>
+
+static void btree_interior_update_updated_root(struct cache_set *,
+ struct btree_interior_update *,
+ enum btree_id);
+
+/* Calculate ideal packed bkey format for new btree nodes: */
+
+void __bch_btree_calc_format(struct bkey_format_state *s, struct btree *b)
+{
+ struct bkey_packed *k;
+ struct bset_tree *t;
+ struct bkey uk;
+
+ bch_bkey_format_add_pos(s, b->data->min_key);
+
+ for_each_bset(b, t)
+ for (k = btree_bkey_first(b, t);
+ k != btree_bkey_last(b, t);
+ k = bkey_next(k))
+ if (!bkey_whiteout(k)) {
+ uk = bkey_unpack_key(b, k);
+ bch_bkey_format_add_key(s, &uk);
+ }
+}
+
+static struct bkey_format bch_btree_calc_format(struct btree *b)
+{
+ struct bkey_format_state s;
+
+ bch_bkey_format_init(&s);
+ __bch_btree_calc_format(&s, b);
+
+ return bch_bkey_format_done(&s);
+}
+
+static size_t btree_node_u64s_with_format(struct btree *b,
+ struct bkey_format *new_f)
+{
+ struct bkey_format *old_f = &b->format;
+
+ /* stupid integer promotion rules */
+ ssize_t delta =
+ (((int) new_f->key_u64s - old_f->key_u64s) *
+ (int) b->nr.packed_keys) +
+ (((int) new_f->key_u64s - BKEY_U64s) *
+ (int) b->nr.unpacked_keys);
+
+ BUG_ON(delta + b->nr.live_u64s < 0);
+
+ return b->nr.live_u64s + delta;
+}
+
+/**
+ * btree_node_format_fits - check if we could rewrite node with a new format
+ *
+ * This assumes all keys can pack with the new format -- it just checks if
+ * the re-packed keys would fit inside the node itself.
+ */
+bool bch_btree_node_format_fits(struct cache_set *c, struct btree *b,
+ struct bkey_format *new_f)
+{
+ size_t u64s = btree_node_u64s_with_format(b, new_f);
+
+ return __set_bytes(b->data, u64s) < btree_bytes(c);
+}
+
+/* Btree node freeing/allocation: */
+
+/*
+ * We're doing the index update that makes @b unreachable, update stuff to
+ * reflect that:
+ *
+ * Must be called _before_ btree_interior_update_updated_root() or
+ * btree_interior_update_updated_btree:
+ */
+static void bch_btree_node_free_index(struct cache_set *c, struct btree *b,
+ enum btree_id id, struct bkey_s_c k,
+ struct bucket_stats_cache_set *stats)
+{
+ struct btree_interior_update *as;
+ struct pending_btree_node_free *d;
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ for_each_pending_btree_node_free(c, as, d)
+ if (!bkey_cmp(k.k->p, d->key.k.p) &&
+ bkey_val_bytes(k.k) == bkey_val_bytes(&d->key.k) &&
+ !memcmp(k.v, &d->key.v, bkey_val_bytes(k.k)))
+ goto found;
+
+ BUG();
+found:
+ d->index_update_done = true;
+
+ /*
+ * Btree nodes are accounted as freed in cache_set_stats when they're
+ * freed from the index:
+ */
+ stats->s[S_COMPRESSED][S_META] -= c->sb.btree_node_size;
+ stats->s[S_UNCOMPRESSED][S_META] -= c->sb.btree_node_size;
+
+ /*
+ * We're dropping @k from the btree, but it's still live until the
+ * index update is persistent so we need to keep a reference around for
+ * mark and sweep to find - that's primarily what the
+ * btree_node_pending_free list is for.
+ *
+ * So here (when we set index_update_done = true), we're moving an
+ * existing reference to a different part of the larger "gc keyspace" -
+ * and the new position comes after the old position, since GC marks
+ * the pending free list after it walks the btree.
+ *
+ * If we move the reference while mark and sweep is _between_ the old
+ * and the new position, mark and sweep will see the reference twice
+ * and it'll get double accounted - so check for that here and subtract
+ * to cancel out one of mark and sweep's markings if necessary:
+ */
+
+ /*
+ * bch_mark_key() compares the current gc pos to the pos we're
+ * moving this reference from, hence one comparison here:
+ */
+ if (gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) {
+ struct bucket_stats_cache_set tmp = { 0 };
+
+ bch_mark_key(c, bkey_i_to_s_c(&d->key),
+ -c->sb.btree_node_size, true, b
+ ? gc_pos_btree_node(b)
+ : gc_pos_btree_root(id),
+ &tmp, 0);
+ /*
+ * Don't apply tmp - pending deletes aren't tracked in
+ * cache_set_stats:
+ */
+ }
+
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+static void __btree_node_free(struct cache_set *c, struct btree *b,
+ struct btree_iter *iter)
+{
+ trace_bcache_btree_node_free(c, b);
+
+ BUG_ON(b == btree_node_root(c, b));
+ BUG_ON(b->ob);
+ BUG_ON(!list_empty(&b->write_blocked));
+
+ six_lock_write(&b->lock);
+
+ if (btree_node_dirty(b))
+ bch_btree_complete_write(c, b, btree_current_write(b));
+ clear_btree_node_dirty(b);
+
+ mca_hash_remove(c, b);
+
+ mutex_lock(&c->btree_cache_lock);
+ list_move(&b->list, &c->btree_cache_freeable);
+ mutex_unlock(&c->btree_cache_lock);
+
+ /*
+ * By using six_unlock_write() directly instead of
+ * btree_node_unlock_write(), we don't update the iterator's sequence
+ * numbers and cause future btree_node_relock() calls to fail:
+ */
+ six_unlock_write(&b->lock);
+}
+
+void bch_btree_node_free_never_inserted(struct cache_set *c, struct btree *b)
+{
+ struct open_bucket *ob = b->ob;
+
+ b->ob = NULL;
+
+ __btree_node_free(c, b, NULL);
+
+ bch_open_bucket_put(c, ob);
+}
+
+void bch_btree_node_free_inmem(struct btree_iter *iter, struct btree *b)
+{
+ bch_btree_iter_node_drop_linked(iter, b);
+
+ __btree_node_free(iter->c, b, iter);
+
+ bch_btree_iter_node_drop(iter, b);
+}
+
+static void bch_btree_node_free_ondisk(struct cache_set *c,
+ struct pending_btree_node_free *pending)
+{
+ struct bucket_stats_cache_set stats = { 0 };
+
+ BUG_ON(!pending->index_update_done);
+
+ bch_mark_key(c, bkey_i_to_s_c(&pending->key),
+ -c->sb.btree_node_size, true,
+ gc_phase(GC_PHASE_PENDING_DELETE),
+ &stats, 0);
+ /*
+ * Don't apply stats - pending deletes aren't tracked in
+ * cache_set_stats:
+ */
+}
+
+void btree_open_bucket_put(struct cache_set *c, struct btree *b)
+{
+ bch_open_bucket_put(c, b->ob);
+ b->ob = NULL;
+}
+
+static struct btree *__bch_btree_node_alloc(struct cache_set *c,
+ bool use_reserve,
+ struct disk_reservation *res,
+ struct closure *cl)
+{
+ BKEY_PADDED(k) tmp;
+ struct open_bucket *ob;
+ struct btree *b;
+ unsigned reserve = use_reserve ? 0 : BTREE_NODE_RESERVE;
+
+ mutex_lock(&c->btree_reserve_cache_lock);
+ if (c->btree_reserve_cache_nr > reserve) {
+ struct btree_alloc *a =
+ &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
+
+ ob = a->ob;
+ bkey_copy(&tmp.k, &a->k);
+ mutex_unlock(&c->btree_reserve_cache_lock);
+ goto mem_alloc;
+ }
+ mutex_unlock(&c->btree_reserve_cache_lock);
+
+retry:
+ /* alloc_sectors is weird, I suppose */
+ bkey_extent_init(&tmp.k);
+ tmp.k.k.size = c->sb.btree_node_size,
+
+ ob = bch_alloc_sectors(c, &c->btree_write_point,
+ bkey_i_to_extent(&tmp.k),
+ res->nr_replicas,
+ use_reserve ? RESERVE_BTREE : RESERVE_NONE,
+ cl);
+ if (IS_ERR(ob))
+ return ERR_CAST(ob);
+
+ if (tmp.k.k.size < c->sb.btree_node_size) {
+ bch_open_bucket_put(c, ob);
+ goto retry;
+ }
+mem_alloc:
+ b = mca_alloc(c);
+
+ /* we hold cannibalize_lock: */
+ BUG_ON(IS_ERR(b));
+ BUG_ON(b->ob);
+
+ bkey_copy(&b->key, &tmp.k);
+ b->key.k.size = 0;
+ b->ob = ob;
+
+ return b;
+}
+
+static struct btree *bch_btree_node_alloc(struct cache_set *c,
+ unsigned level, enum btree_id id,
+ struct btree_reserve *reserve)
+{
+ struct btree *b;
+
+ BUG_ON(!reserve->nr);
+
+ b = reserve->b[--reserve->nr];
+
+ BUG_ON(mca_hash_insert(c, b, level, id));
+
+ set_btree_node_accessed(b);
+ set_btree_node_dirty(b);
+
+ bch_bset_init_first(b, &b->data->keys);
+ memset(&b->nr, 0, sizeof(b->nr));
+ b->data->magic = cpu_to_le64(bset_magic(&c->disk_sb));
+ SET_BSET_BTREE_LEVEL(&b->data->keys, level);
+
+ bch_btree_build_aux_trees(b);
+
+ bch_check_mark_super(c, &b->key, true);
+
+ trace_bcache_btree_node_alloc(c, b);
+ return b;
+}
+
+struct btree *__btree_node_alloc_replacement(struct cache_set *c,
+ struct btree *b,
+ struct bkey_format format,
+ struct btree_reserve *reserve)
+{
+ struct btree *n;
+
+ n = bch_btree_node_alloc(c, b->level, b->btree_id, reserve);
+
+ n->data->min_key = b->data->min_key;
+ n->data->max_key = b->data->max_key;
+ n->data->format = format;
+
+ btree_node_set_format(n, format);
+
+ bch_btree_sort_into(c, n, b);
+
+ btree_node_reset_sib_u64s(n);
+
+ n->key.k.p = b->key.k.p;
+ trace_bcache_btree_node_alloc_replacement(c, b, n);
+
+ return n;
+}
+
+struct btree *btree_node_alloc_replacement(struct cache_set *c,
+ struct btree *b,
+ struct btree_reserve *reserve)
+{
+ struct bkey_format new_f = bch_btree_calc_format(b);
+
+ /*
+ * The keys might expand with the new format - if they wouldn't fit in
+ * the btree node anymore, use the old format for now:
+ */
+ if (!bch_btree_node_format_fits(c, b, &new_f))
+ new_f = b->format;
+
+ return __btree_node_alloc_replacement(c, b, new_f, reserve);
+}
+
+static void bch_btree_set_root_inmem(struct cache_set *c, struct btree *b,
+ struct btree_reserve *btree_reserve)
+{
+ struct btree *old = btree_node_root(c, b);
+
+ /* Root nodes cannot be reaped */
+ mutex_lock(&c->btree_cache_lock);
+ list_del_init(&b->list);
+ mutex_unlock(&c->btree_cache_lock);
+
+ mutex_lock(&c->btree_root_lock);
+ btree_node_root(c, b) = b;
+ mutex_unlock(&c->btree_root_lock);
+
+ if (btree_reserve) {
+ /*
+ * New allocation (we're not being called because we're in
+ * bch_btree_root_read()) - do marking while holding
+ * btree_root_lock:
+ */
+ struct bucket_stats_cache_set stats = { 0 };
+
+ bch_mark_key(c, bkey_i_to_s_c(&b->key),
+ c->sb.btree_node_size, true,
+ gc_pos_btree_root(b->btree_id),
+ &stats, 0);
+
+ if (old)
+ bch_btree_node_free_index(c, NULL, old->btree_id,
+ bkey_i_to_s_c(&old->key),
+ &stats);
+ bch_cache_set_stats_apply(c, &stats, &btree_reserve->disk_res,
+ gc_pos_btree_root(b->btree_id));
+ }
+
+ bch_recalc_btree_reserve(c);
+}
+
+static void bch_btree_set_root_ondisk(struct cache_set *c, struct btree *b)
+{
+ struct btree_root *r = &c->btree_roots[b->btree_id];
+
+ mutex_lock(&c->btree_root_lock);
+
+ BUG_ON(b != r->b);
+ bkey_copy(&r->key, &b->key);
+ r->level = b->level;
+ r->alive = true;
+
+ mutex_unlock(&c->btree_root_lock);
+}
+
+/*
+ * Only for cache set bringup, when first reading the btree roots or allocating
+ * btree roots when initializing a new cache set:
+ */
+void bch_btree_set_root_initial(struct cache_set *c, struct btree *b,
+ struct btree_reserve *btree_reserve)
+{
+ BUG_ON(btree_node_root(c, b));
+
+ bch_btree_set_root_inmem(c, b, btree_reserve);
+ bch_btree_set_root_ondisk(c, b);
+}
+
+/**
+ * bch_btree_set_root - update the root in memory and on disk
+ *
+ * To ensure forward progress, the current task must not be holding any
+ * btree node write locks. However, you must hold an intent lock on the
+ * old root.
+ *
+ * Note: This allocates a journal entry but doesn't add any keys to
+ * it. All the btree roots are part of every journal write, so there
+ * is nothing new to be done. This just guarantees that there is a
+ * journal write.
+ */
+static void bch_btree_set_root(struct btree_iter *iter, struct btree *b,
+ struct btree_interior_update *as,
+ struct btree_reserve *btree_reserve)
+{
+ struct cache_set *c = iter->c;
+ struct btree *old;
+
+ trace_bcache_btree_set_root(c, b);
+ BUG_ON(!b->written);
+
+ old = btree_node_root(c, b);
+
+ /*
+ * Ensure no one is using the old root while we switch to the
+ * new root:
+ */
+ btree_node_lock_write(old, iter);
+
+ bch_btree_set_root_inmem(c, b, btree_reserve);
+
+ btree_interior_update_updated_root(c, as, iter->btree_id);
+
+ /*
+ * Unlock old root after new root is visible:
+ *
+ * The new root isn't persistent, but that's ok: we still have
+ * an intent lock on the new root, and any updates that would
+ * depend on the new root would have to update the new root.
+ */
+ btree_node_unlock_write(old, iter);
+}
+
+static struct btree *__btree_root_alloc(struct cache_set *c, unsigned level,
+ enum btree_id id,
+ struct btree_reserve *reserve)
+{
+ struct btree *b = bch_btree_node_alloc(c, level, id, reserve);
+
+ b->data->min_key = POS_MIN;
+ b->data->max_key = POS_MAX;
+ b->data->format = bch_btree_calc_format(b);
+ b->key.k.p = POS_MAX;
+
+ btree_node_set_format(b, b->data->format);
+ bch_btree_build_aux_trees(b);
+
+ six_unlock_write(&b->lock);
+
+ return b;
+}
+
+void bch_btree_reserve_put(struct cache_set *c, struct btree_reserve *reserve)
+{
+ bch_disk_reservation_put(c, &reserve->disk_res);
+
+ mutex_lock(&c->btree_reserve_cache_lock);
+
+ while (reserve->nr) {
+ struct btree *b = reserve->b[--reserve->nr];
+
+ six_unlock_write(&b->lock);
+
+ if (c->btree_reserve_cache_nr <
+ ARRAY_SIZE(c->btree_reserve_cache)) {
+ struct btree_alloc *a =
+ &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
+
+ a->ob = b->ob;
+ b->ob = NULL;
+ bkey_copy(&a->k, &b->key);
+ } else {
+ bch_open_bucket_put(c, b->ob);
+ b->ob = NULL;
+ }
+
+ __btree_node_free(c, b, NULL);
+
+ six_unlock_intent(&b->lock);
+ }
+
+ mutex_unlock(&c->btree_reserve_cache_lock);
+
+ mempool_free(reserve, &c->btree_reserve_pool);
+}
+
+static struct btree_reserve *__bch_btree_reserve_get(struct cache_set *c,
+ unsigned nr_nodes,
+ unsigned flags,
+ struct closure *cl)
+{
+ struct btree_reserve *reserve;
+ struct btree *b;
+ struct disk_reservation disk_res = { 0, 0 };
+ unsigned sectors = nr_nodes * c->sb.btree_node_size;
+ int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD|
+ BCH_DISK_RESERVATION_METADATA;
+
+ if (flags & BTREE_INSERT_NOFAIL)
+ disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL;
+
+ /*
+ * This check isn't necessary for correctness - it's just to potentially
+ * prevent us from doing a lot of work that'll end up being wasted:
+ */
+ ret = bch_journal_error(&c->journal);
+ if (ret)
+ return ERR_PTR(ret);
+
+ if (bch_disk_reservation_get(c, &disk_res, sectors, disk_res_flags))
+ return ERR_PTR(-ENOSPC);
+
+ BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
+
+ /*
+ * Protects reaping from the btree node cache and using the btree node
+ * open bucket reserve:
+ */
+ ret = mca_cannibalize_lock(c, cl);
+ if (ret) {
+ bch_disk_reservation_put(c, &disk_res);
+ return ERR_PTR(ret);
+ }
+
+ reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO);
+
+ reserve->disk_res = disk_res;
+ reserve->nr = 0;
+
+ while (reserve->nr < nr_nodes) {
+ b = __bch_btree_node_alloc(c, flags & BTREE_INSERT_USE_RESERVE,
+ &disk_res, cl);
+ if (IS_ERR(b)) {
+ ret = PTR_ERR(b);
+ goto err_free;
+ }
+
+ reserve->b[reserve->nr++] = b;
+ }
+
+ mca_cannibalize_unlock(c);
+ return reserve;
+err_free:
+ bch_btree_reserve_put(c, reserve);
+ mca_cannibalize_unlock(c);
+ trace_bcache_btree_reserve_get_fail(c, nr_nodes, cl);
+ return ERR_PTR(ret);
+}
+
+struct btree_reserve *bch_btree_reserve_get(struct cache_set *c,
+ struct btree *b,
+ unsigned extra_nodes,
+ unsigned flags,
+ struct closure *cl)
+{
+ unsigned depth = btree_node_root(c, b)->level - b->level;
+ unsigned nr_nodes = btree_reserve_required_nodes(depth) + extra_nodes;
+
+ return __bch_btree_reserve_get(c, nr_nodes, flags, cl);
+
+}
+
+int bch_btree_root_alloc(struct cache_set *c, enum btree_id id,
+ struct closure *writes)
+{
+ struct closure cl;
+ struct btree_reserve *reserve;
+ struct btree *b;
+
+ closure_init_stack(&cl);
+
+ while (1) {
+ /* XXX haven't calculated capacity yet :/ */
+ reserve = __bch_btree_reserve_get(c, 1, 0, &cl);
+ if (!IS_ERR(reserve))
+ break;
+
+ if (PTR_ERR(reserve) == -ENOSPC)
+ return PTR_ERR(reserve);
+
+ closure_sync(&cl);
+ }
+
+ b = __btree_root_alloc(c, 0, id, reserve);
+
+ bch_btree_node_write(c, b, writes, SIX_LOCK_intent, -1);
+
+ bch_btree_set_root_initial(c, b, reserve);
+ btree_open_bucket_put(c, b);
+ six_unlock_intent(&b->lock);
+
+ bch_btree_reserve_put(c, reserve);
+
+ return 0;
+}
+
+static void bch_insert_fixup_btree_ptr(struct btree_iter *iter,
+ struct btree *b,
+ struct bkey_i *insert,
+ struct btree_node_iter *node_iter,
+ struct disk_reservation *disk_res)
+{
+ struct cache_set *c = iter->c;
+ struct bucket_stats_cache_set stats = { 0 };
+ struct bkey_packed *k;
+ struct bkey tmp;
+
+ if (bkey_extent_is_data(&insert->k))
+ bch_mark_key(c, bkey_i_to_s_c(insert),
+ c->sb.btree_node_size, true,
+ gc_pos_btree_node(b), &stats, 0);
+
+ while ((k = bch_btree_node_iter_peek_all(node_iter, b)) &&
+ !btree_iter_pos_cmp_packed(b, &insert->k.p, k, false))
+ bch_btree_node_iter_advance(node_iter, b);
+
+ /*
+ * If we're overwriting, look up pending delete and mark so that gc
+ * marks it on the pending delete list:
+ */
+ if (k && !bkey_cmp_packed(b, k, &insert->k))
+ bch_btree_node_free_index(c, b, iter->btree_id,
+ bkey_disassemble(b, k, &tmp),
+ &stats);
+
+ bch_cache_set_stats_apply(c, &stats, disk_res, gc_pos_btree_node(b));
+
+ bch_btree_bset_insert_key(iter, b, node_iter, insert);
+ set_btree_node_dirty(b);
+}
+
+/* Inserting into a given leaf node (last stage of insert): */
+
+/* Handle overwrites and do insert, for non extents: */
+bool bch_btree_bset_insert_key(struct btree_iter *iter,
+ struct btree *b,
+ struct btree_node_iter *node_iter,
+ struct bkey_i *insert)
+{
+ const struct bkey_format *f = &b->format;
+ struct bkey_packed *k;
+ struct bset_tree *t;
+ unsigned clobber_u64s;
+
+ EBUG_ON(btree_node_just_written(b));
+ EBUG_ON(bset_written(b, btree_bset_last(b)));
+ EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k));
+ EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 ||
+ bkey_cmp(insert->k.p, b->data->max_key) > 0);
+ BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(iter->c, b));
+
+ k = bch_btree_node_iter_peek_all(node_iter, b);
+ if (k && !bkey_cmp_packed(b, k, &insert->k)) {
+ BUG_ON(bkey_whiteout(k));
+
+ t = bch_bkey_to_bset(b, k);
+
+ if (bset_unwritten(b, bset(b, t)) &&
+ bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k)) {
+ BUG_ON(bkey_whiteout(k) != bkey_whiteout(&insert->k));
+
+ k->type = insert->k.type;
+ memcpy_u64s(bkeyp_val(f, k), &insert->v,
+ bkey_val_u64s(&insert->k));
+ return true;
+ }
+
+ insert->k.needs_whiteout = k->needs_whiteout;
+
+ btree_keys_account_key_drop(&b->nr, t - b->set, k);
+
+ if (t == bset_tree_last(b)) {
+ clobber_u64s = k->u64s;
+
+ /*
+ * If we're deleting, and the key we're deleting doesn't
+ * need a whiteout (it wasn't overwriting a key that had
+ * been written to disk) - just delete it:
+ */
+ if (bkey_whiteout(&insert->k) && !k->needs_whiteout) {
+ bch_bset_delete(b, k, clobber_u64s);
+ bch_btree_node_iter_fix(iter, b, node_iter, t,
+ k, clobber_u64s, 0);
+ return true;
+ }
+
+ goto overwrite;
+ }
+
+ k->type = KEY_TYPE_DELETED;
+ bch_btree_node_iter_fix(iter, b, node_iter, t, k,
+ k->u64s, k->u64s);
+
+ if (bkey_whiteout(&insert->k)) {
+ reserve_whiteout(b, t, k);
+ return true;
+ } else {
+ k->needs_whiteout = false;
+ }
+ } else {
+ /*
+ * Deleting, but the key to delete wasn't found - nothing to do:
+ */
+ if (bkey_whiteout(&insert->k))
+ return false;
+
+ insert->k.needs_whiteout = false;
+ }
+
+ t = bset_tree_last(b);
+ k = bch_btree_node_iter_bset_pos(node_iter, b, t);
+ clobber_u64s = 0;
+overwrite:
+ bch_bset_insert(b, node_iter, k, insert, clobber_u64s);
+ if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k))
+ bch_btree_node_iter_fix(iter, b, node_iter, t, k,
+ clobber_u64s, k->u64s);
+ return true;
+}
+
+static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin,
+ unsigned i)
+{
+ struct cache_set *c = container_of(j, struct cache_set, journal);
+ struct btree_write *w = container_of(pin, struct btree_write, journal);
+ struct btree *b = container_of(w, struct btree, writes[i]);
+
+ six_lock_read(&b->lock);
+ /*
+ * Reusing a btree node can race with the journal reclaim code calling
+ * the journal pin flush fn, and there's no good fix for this: we don't
+ * really want journal_pin_drop() to block until the flush fn is no
+ * longer running, because journal_pin_drop() is called from the btree
+ * node write endio function, and we can't wait on the flush fn to
+ * finish running in mca_reap() - where we make reused btree nodes ready
+ * to use again - because there, we're holding the lock this function
+ * needs - deadlock.
+ *
+ * So, the b->level check is a hack so we don't try to write nodes we
+ * shouldn't:
+ */
+ if (!b->level)
+ bch_btree_node_write(c, b, NULL, SIX_LOCK_read, i);
+ six_unlock_read(&b->lock);
+}
+
+static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin)
+{
+ return __btree_node_flush(j, pin, 0);
+}
+
+static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin)
+{
+ return __btree_node_flush(j, pin, 1);
+}
+
+void bch_btree_journal_key(struct btree_insert *trans,
+ struct btree_iter *iter,
+ struct bkey_i *insert)
+{
+ struct cache_set *c = trans->c;
+ struct journal *j = &c->journal;
+ struct btree *b = iter->nodes[0];
+ struct btree_write *w = btree_current_write(b);
+
+ EBUG_ON(iter->level || b->level);
+ EBUG_ON(!trans->journal_res.ref &&
+ test_bit(JOURNAL_REPLAY_DONE, &j->flags));
+
+ if (!journal_pin_active(&w->journal))
+ bch_journal_pin_add(j, &w->journal,
+ btree_node_write_idx(b) == 0
+ ? btree_node_flush0
+ : btree_node_flush1);
+
+ if (trans->journal_res.ref) {
+ u64 seq = trans->journal_res.seq;
+ bool needs_whiteout = insert->k.needs_whiteout;
+
+ /*
+ * have a bug where we're seeing an extent with an invalid crc
+ * entry in the journal, trying to track it down:
+ */
+ BUG_ON(bkey_invalid(c, b->btree_id, bkey_i_to_s_c(insert)));
+
+ /* ick */
+ insert->k.needs_whiteout = false;
+ bch_journal_add_keys(j, &trans->journal_res,
+ b->btree_id, insert);
+ insert->k.needs_whiteout = needs_whiteout;
+
+ if (trans->journal_seq)
+ *trans->journal_seq = seq;
+ btree_bset_last(b)->journal_seq = cpu_to_le64(seq);
+ }
+
+ if (!btree_node_dirty(b))
+ set_btree_node_dirty(b);
+}
+
+static enum btree_insert_ret
+bch_insert_fixup_key(struct btree_insert *trans,
+ struct btree_insert_entry *insert)
+{
+ struct btree_iter *iter = insert->iter;
+
+ BUG_ON(iter->level);
+
+ if (bch_btree_bset_insert_key(iter,
+ iter->nodes[0],
+ &iter->node_iters[0],
+ insert->k))
+ bch_btree_journal_key(trans, iter, insert->k);
+
+ trans->did_work = true;
+ return BTREE_INSERT_OK;
+}
+
+static void verify_keys_sorted(struct keylist *l)
+{
+#ifdef CONFIG_BCACHE_DEBUG
+ struct bkey_i *k;
+
+ for_each_keylist_key(l, k)
+ BUG_ON(bkey_next(k) != l->top &&
+ bkey_cmp(k->k.p, bkey_next(k)->k.p) >= 0);
+#endif
+}
+
+static void btree_node_lock_for_insert(struct btree *b, struct btree_iter *iter)
+{
+ struct cache_set *c = iter->c;
+
+ btree_node_lock_write(b, iter);
+
+ if (btree_node_just_written(b) &&
+ bch_btree_post_write_cleanup(c, b))
+ bch_btree_iter_reinit_node(iter, b);
+
+ /*
+ * If the last bset has been written, or if it's gotten too big - start
+ * a new bset to insert into:
+ */
+ if (want_new_bset(c, b))
+ bch_btree_init_next(c, b, iter);
+}
+
+/* Asynchronous interior node update machinery */
+
+struct btree_interior_update *
+bch_btree_interior_update_alloc(struct cache_set *c)
+{
+ struct btree_interior_update *as;
+
+ as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
+ memset(as, 0, sizeof(*as));
+ closure_init(&as->cl, &c->cl);
+ as->c = c;
+ as->mode = BTREE_INTERIOR_NO_UPDATE;
+
+ bch_keylist_init(&as->parent_keys, as->inline_keys,
+ ARRAY_SIZE(as->inline_keys));
+
+ mutex_lock(&c->btree_interior_update_lock);
+ list_add(&as->list, &c->btree_interior_update_list);
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ return as;
+}
+
+static void btree_interior_update_free(struct closure *cl)
+{
+ struct btree_interior_update *as = container_of(cl, struct btree_interior_update, cl);
+
+ mempool_free(as, &as->c->btree_interior_update_pool);
+}
+
+static void btree_interior_update_nodes_reachable(struct closure *cl)
+{
+ struct btree_interior_update *as =
+ container_of(cl, struct btree_interior_update, cl);
+ struct cache_set *c = as->c;
+ unsigned i;
+
+ bch_journal_pin_drop(&c->journal, &as->journal);
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ for (i = 0; i < as->nr_pending; i++)
+ bch_btree_node_free_ondisk(c, &as->pending[i]);
+ as->nr_pending = 0;
+
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ mutex_lock(&c->btree_interior_update_lock);
+ list_del(&as->list);
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ closure_wake_up(&as->wait);
+
+ closure_return_with_destructor(cl, btree_interior_update_free);
+}
+
+static void btree_interior_update_nodes_written(struct closure *cl)
+{
+ struct btree_interior_update *as =
+ container_of(cl, struct btree_interior_update, cl);
+ struct cache_set *c = as->c;
+ struct btree *b;
+
+ if (bch_journal_error(&c->journal)) {
+ /* XXX what? */
+ }
+
+ /* XXX: missing error handling, damnit */
+
+ /* check for journal error, bail out if we flushed */
+
+ /*
+ * We did an update to a parent node where the pointers we added pointed
+ * to child nodes that weren't written yet: now, the child nodes have
+ * been written so we can write out the update to the interior node.
+ */
+retry:
+ mutex_lock(&c->btree_interior_update_lock);
+ switch (as->mode) {
+ case BTREE_INTERIOR_NO_UPDATE:
+ BUG();
+ case BTREE_INTERIOR_UPDATING_NODE:
+ /* The usual case: */
+ b = READ_ONCE(as->b);
+
+ if (!six_trylock_read(&b->lock)) {
+ mutex_unlock(&c->btree_interior_update_lock);
+ six_lock_read(&b->lock);
+ six_unlock_read(&b->lock);
+ goto retry;
+ }
+
+ BUG_ON(!btree_node_dirty(b));
+ closure_wait(&btree_current_write(b)->wait, cl);
+
+ list_del(&as->write_blocked_list);
+
+ if (list_empty(&b->write_blocked))
+ bch_btree_node_write(c, b, NULL, SIX_LOCK_read, -1);
+ six_unlock_read(&b->lock);
+ break;
+
+ case BTREE_INTERIOR_UPDATING_AS:
+ /*
+ * The btree node we originally updated has been freed and is
+ * being rewritten - so we need to write anything here, we just
+ * need to signal to that btree_interior_update that it's ok to make the
+ * new replacement node visible:
+ */
+ closure_put(&as->parent_as->cl);
+
+ /*
+ * and then we have to wait on that btree_interior_update to finish:
+ */
+ closure_wait(&as->parent_as->wait, cl);
+ break;
+
+ case BTREE_INTERIOR_UPDATING_ROOT:
+ /* b is the new btree root: */
+ b = READ_ONCE(as->b);
+
+ if (!six_trylock_read(&b->lock)) {
+ mutex_unlock(&c->btree_interior_update_lock);
+ six_lock_read(&b->lock);
+ six_unlock_read(&b->lock);
+ goto retry;
+ }
+
+ BUG_ON(c->btree_roots[b->btree_id].as != as);
+ c->btree_roots[b->btree_id].as = NULL;
+
+ bch_btree_set_root_ondisk(c, b);
+
+ /*
+ * We don't have to wait anything anything here (before
+ * btree_interior_update_nodes_reachable frees the old nodes
+ * ondisk) - we've ensured that the very next journal write will
+ * have the pointer to the new root, and before the allocator
+ * can reuse the old nodes it'll have to do a journal commit:
+ */
+ six_unlock_read(&b->lock);
+ }
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ continue_at(cl, btree_interior_update_nodes_reachable, system_wq);
+}
+
+/*
+ * We're updating @b with pointers to nodes that haven't finished writing yet:
+ * block @b from being written until @as completes
+ */
+static void btree_interior_update_updated_btree(struct cache_set *c,
+ struct btree_interior_update *as,
+ struct btree *b)
+{
+ mutex_lock(&c->btree_interior_update_lock);
+
+ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
+ BUG_ON(!btree_node_dirty(b));
+
+ as->mode = BTREE_INTERIOR_UPDATING_NODE;
+ as->b = b;
+ list_add(&as->write_blocked_list, &b->write_blocked);
+
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ bch_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
+
+ continue_at(&as->cl, btree_interior_update_nodes_written,
+ system_freezable_wq);
+}
+
+static void btree_interior_update_updated_root(struct cache_set *c,
+ struct btree_interior_update *as,
+ enum btree_id btree_id)
+{
+ struct btree_root *r = &c->btree_roots[btree_id];
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
+
+ /*
+ * Old root might not be persistent yet - if so, redirect its
+ * btree_interior_update operation to point to us:
+ */
+ if (r->as) {
+ BUG_ON(r->as->mode != BTREE_INTERIOR_UPDATING_ROOT);
+
+ r->as->b = NULL;
+ r->as->mode = BTREE_INTERIOR_UPDATING_AS;
+ r->as->parent_as = as;
+ closure_get(&as->cl);
+ }
+
+ as->mode = BTREE_INTERIOR_UPDATING_ROOT;
+ as->b = r->b;
+ r->as = as;
+
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ bch_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
+
+ continue_at(&as->cl, btree_interior_update_nodes_written,
+ system_freezable_wq);
+}
+
+static void interior_update_flush(struct journal *j, struct journal_entry_pin *pin)
+{
+ struct btree_interior_update *as =
+ container_of(pin, struct btree_interior_update, journal);
+
+ bch_journal_flush_seq_async(j, as->journal_seq, NULL);
+}
+
+/*
+ * @b is being split/rewritten: it may have pointers to not-yet-written btree
+ * nodes and thus outstanding btree_interior_updates - redirect @b's
+ * btree_interior_updates to point to this btree_interior_update:
+ */
+void bch_btree_interior_update_will_free_node(struct cache_set *c,
+ struct btree_interior_update *as,
+ struct btree *b)
+{
+ struct btree_interior_update *p, *n;
+ struct pending_btree_node_free *d;
+ struct bset_tree *t;
+
+ /*
+ * Does this node have data that hasn't been written in the journal?
+ *
+ * If so, we have to wait for the corresponding journal entry to be
+ * written before making the new nodes reachable - we can't just carry
+ * over the bset->journal_seq tracking, since we'll be mixing those keys
+ * in with keys that aren't in the journal anymore:
+ */
+ for_each_bset(b, t)
+ as->journal_seq = max(as->journal_seq, bset(b, t)->journal_seq);
+
+ /*
+ * Does this node have unwritten data that has a pin on the journal?
+ *
+ * If so, transfer that pin to the btree_interior_update operation -
+ * note that if we're freeing multiple nodes, we only need to keep the
+ * oldest pin of any of the nodes we're freeing. We'll release the pin
+ * when the new nodes are persistent and reachable on disk:
+ */
+ bch_journal_pin_add_if_older(&c->journal,
+ &b->writes[0].journal,
+ &as->journal, interior_update_flush);
+ bch_journal_pin_add_if_older(&c->journal,
+ &b->writes[1].journal,
+ &as->journal, interior_update_flush);
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ /*
+ * Does this node have any btree_interior_update operations preventing
+ * it from being written?
+ *
+ * If so, redirect them to point to this btree_interior_update: we can
+ * write out our new nodes, but we won't make them visible until those
+ * operations complete
+ */
+ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
+ BUG_ON(p->mode != BTREE_INTERIOR_UPDATING_NODE);
+
+ p->mode = BTREE_INTERIOR_UPDATING_AS;
+ list_del(&p->write_blocked_list);
+ p->b = NULL;
+ p->parent_as = as;
+ closure_get(&as->cl);
+ }
+
+ /* Add this node to the list of nodes being freed: */
+ BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending));
+
+ d = &as->pending[as->nr_pending++];
+ d->index_update_done = false;
+ d->seq = b->data->keys.seq;
+ d->btree_id = b->btree_id;
+ d->level = b->level;
+ bkey_copy(&d->key, &b->key);
+
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+static void btree_node_interior_verify(struct btree *b)
+{
+ struct btree_node_iter iter;
+ struct bkey_packed *k;
+
+ BUG_ON(!b->level);
+
+ bch_btree_node_iter_init(&iter, b, b->key.k.p, false, false);
+#if 1
+ BUG_ON(!(k = bch_btree_node_iter_peek(&iter, b)) ||
+ bkey_cmp_left_packed(b, k, &b->key.k.p));
+
+ BUG_ON((bch_btree_node_iter_advance(&iter, b),
+ !bch_btree_node_iter_end(&iter)));
+#else
+ const char *msg;
+
+ msg = "not found";
+ k = bch_btree_node_iter_peek(&iter, b);
+ if (!k)
+ goto err;
+
+ msg = "isn't what it should be";
+ if (bkey_cmp_left_packed(b, k, &b->key.k.p))
+ goto err;
+
+ bch_btree_node_iter_advance(&iter, b);
+
+ msg = "isn't last key";
+ if (!bch_btree_node_iter_end(&iter))
+ goto err;
+ return;
+err:
+ bch_dump_btree_node(b);
+ printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode,
+ b->key.k.p.offset, msg);
+ BUG();
+#endif
+}
+
+static enum btree_insert_ret
+bch_btree_insert_keys_interior(struct btree *b,
+ struct btree_iter *iter,
+ struct keylist *insert_keys,
+ struct btree_interior_update *as,
+ struct btree_reserve *res)
+{
+ struct cache_set *c = iter->c;
+ struct btree_iter *linked;
+ struct btree_node_iter node_iter;
+ struct bkey_i *insert = bch_keylist_front(insert_keys);
+ struct bkey_packed *k;
+
+ BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
+ BUG_ON(!b->level);
+ BUG_ON(!as || as->b);
+ verify_keys_sorted(insert_keys);
+
+ btree_node_lock_for_insert(b, iter);
+
+ if (bch_keylist_u64s(insert_keys) >
+ bch_btree_keys_u64s_remaining(c, b)) {
+ btree_node_unlock_write(b, iter);
+ return BTREE_INSERT_BTREE_NODE_FULL;
+ }
+
+ /* Don't screw up @iter's position: */
+ node_iter = iter->node_iters[b->level];
+
+ /*
+ * btree_split(), btree_gc_coalesce() will insert keys before
+ * the iterator's current position - they know the keys go in
+ * the node the iterator points to:
+ */
+ while ((k = bch_btree_node_iter_prev_all(&node_iter, b)) &&
+ (bkey_cmp_packed(b, k, &insert->k) >= 0))
+ ;
+
+ while (!bch_keylist_empty(insert_keys)) {
+ insert = bch_keylist_front(insert_keys);
+
+ bch_insert_fixup_btree_ptr(iter, b, insert,
+ &node_iter, &res->disk_res);
+ bch_keylist_pop_front(insert_keys);
+ }
+
+ btree_interior_update_updated_btree(c, as, b);
+
+ for_each_linked_btree_node(iter, b, linked)
+ bch_btree_node_iter_peek(&linked->node_iters[b->level],
+ b);
+ bch_btree_node_iter_peek(&iter->node_iters[b->level], b);
+
+ bch_btree_iter_verify(iter, b);
+
+ if (bch_maybe_compact_whiteouts(c, b))
+ bch_btree_iter_reinit_node(iter, b);
+
+ btree_node_unlock_write(b, iter);
+
+ btree_node_interior_verify(b);
+ return BTREE_INSERT_OK;
+}
+
+/*
+ * Move keys from n1 (original replacement node, now lower node) to n2 (higher
+ * node)
+ */
+static struct btree *__btree_split_node(struct btree_iter *iter, struct btree *n1,
+ struct btree_reserve *reserve)
+{
+ size_t nr_packed = 0, nr_unpacked = 0;
+ struct btree *n2;
+ struct bset *set1, *set2;
+ struct bkey_packed *k, *prev = NULL;
+
+ n2 = bch_btree_node_alloc(iter->c, n1->level, iter->btree_id, reserve);
+ n2->data->max_key = n1->data->max_key;
+ n2->data->format = n1->format;
+ n2->key.k.p = n1->key.k.p;
+
+ btree_node_set_format(n2, n2->data->format);
+
+ set1 = btree_bset_first(n1);
+ set2 = btree_bset_first(n2);
+
+ /*
+ * Has to be a linear search because we don't have an auxiliary
+ * search tree yet
+ */
+ k = set1->start;
+ while (1) {
+ if (bkey_next(k) == bset_bkey_last(set1))
+ break;
+ if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
+ break;
+
+ if (bkey_packed(k))
+ nr_packed++;
+ else
+ nr_unpacked++;
+
+ prev = k;
+ k = bkey_next(k);
+ }
+
+ BUG_ON(!prev);
+
+ n1->key.k.p = bkey_unpack_pos(n1, prev);
+ n1->data->max_key = n1->key.k.p;
+ n2->data->min_key =
+ btree_type_successor(n1->btree_id, n1->key.k.p);
+
+ set2->u64s = cpu_to_le16((u64 *) bset_bkey_last(set1) - (u64 *) k);
+ set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
+
+ set_btree_bset_end(n1, n1->set);
+ set_btree_bset_end(n2, n2->set);
+
+ n2->nr.live_u64s = le16_to_cpu(set2->u64s);
+ n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s);
+ n2->nr.packed_keys = n1->nr.packed_keys - nr_packed;
+ n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked;
+
+ n1->nr.live_u64s = le16_to_cpu(set1->u64s);
+ n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
+ n1->nr.packed_keys = nr_packed;
+ n1->nr.unpacked_keys = nr_unpacked;
+
+ BUG_ON(!set1->u64s);
+ BUG_ON(!set2->u64s);
+
+ memcpy_u64s(set2->start,
+ bset_bkey_last(set1),
+ le16_to_cpu(set2->u64s));
+
+ btree_node_reset_sib_u64s(n1);
+ btree_node_reset_sib_u64s(n2);
+
+ bch_verify_btree_nr_keys(n1);
+ bch_verify_btree_nr_keys(n2);
+
+ if (n1->level) {
+ btree_node_interior_verify(n1);
+ btree_node_interior_verify(n2);
+ }
+
+ return n2;
+}
+
+/*
+ * For updates to interior nodes, we've got to do the insert before we split
+ * because the stuff we're inserting has to be inserted atomically. Post split,
+ * the keys might have to go in different nodes and the split would no longer be
+ * atomic.
+ *
+ * Worse, if the insert is from btree node coalescing, if we do the insert after
+ * we do the split (and pick the pivot) - the pivot we pick might be between
+ * nodes that were coalesced, and thus in the middle of a child node post
+ * coalescing:
+ */
+static void btree_split_insert_keys(struct btree_iter *iter, struct btree *b,
+ struct keylist *keys,
+ struct btree_reserve *res)
+{
+ struct btree_node_iter node_iter;
+ struct bkey_i *k = bch_keylist_front(keys);
+ struct bkey_packed *p;
+ struct bset *i;
+
+ BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
+
+ bch_btree_node_iter_init(&node_iter, b, k->k.p, false, false);
+
+ while (!bch_keylist_empty(keys)) {
+ k = bch_keylist_front(keys);
+
+ BUG_ON(bch_keylist_u64s(keys) >
+ bch_btree_keys_u64s_remaining(iter->c, b));
+ BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0);
+ BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0);
+
+ bch_insert_fixup_btree_ptr(iter, b, k, &node_iter, &res->disk_res);
+ bch_keylist_pop_front(keys);
+ }
+
+ /*
+ * We can't tolerate whiteouts here - with whiteouts there can be
+ * duplicate keys, and it would be rather bad if we picked a duplicate
+ * for the pivot:
+ */
+ i = btree_bset_first(b);
+ p = i->start;
+ while (p != bset_bkey_last(i))
+ if (bkey_deleted(p)) {
+ le16_add_cpu(&i->u64s, -p->u64s);
+ set_btree_bset_end(b, b->set);
+ memmove_u64s_down(p, bkey_next(p),
+ (u64 *) bset_bkey_last(i) -
+ (u64 *) p);
+ } else
+ p = bkey_next(p);
+
+ BUG_ON(b->nsets != 1 ||
+ b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
+
+ btree_node_interior_verify(b);
+}
+
+static void btree_split(struct btree *b, struct btree_iter *iter,
+ struct keylist *insert_keys,
+ struct btree_reserve *reserve,
+ struct btree_interior_update *as)
+{
+ struct cache_set *c = iter->c;
+ struct btree *parent = iter->nodes[b->level + 1];
+ struct btree *n1, *n2 = NULL, *n3 = NULL;
+ u64 start_time = local_clock();
+
+ BUG_ON(!parent && (b != btree_node_root(c, b)));
+ BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
+
+ bch_btree_interior_update_will_free_node(c, as, b);
+
+ n1 = btree_node_alloc_replacement(c, b, reserve);
+ if (b->level)
+ btree_split_insert_keys(iter, n1, insert_keys, reserve);
+
+ if (__set_blocks(n1->data,
+ le16_to_cpu(n1->data->keys.u64s),
+ block_bytes(c)) > BTREE_SPLIT_THRESHOLD(c)) {
+ trace_bcache_btree_node_split(c, b, b->nr.live_u64s);
+
+ n2 = __btree_split_node(iter, n1, reserve);
+
+ bch_btree_build_aux_trees(n2);
+ bch_btree_build_aux_trees(n1);
+ six_unlock_write(&n2->lock);
+ six_unlock_write(&n1->lock);
+
+ bch_btree_node_write(c, n2, &as->cl, SIX_LOCK_intent, -1);
+
+ /*
+ * Note that on recursive parent_keys == insert_keys, so we
+ * can't start adding new keys to parent_keys before emptying it
+ * out (which we did with btree_split_insert_keys() above)
+ */
+ bch_keylist_add(&as->parent_keys, &n1->key);
+ bch_keylist_add(&as->parent_keys, &n2->key);
+
+ if (!parent) {
+ /* Depth increases, make a new root */
+ n3 = __btree_root_alloc(c, b->level + 1,
+ iter->btree_id,
+ reserve);
+ n3->sib_u64s[0] = U16_MAX;
+ n3->sib_u64s[1] = U16_MAX;
+
+ btree_split_insert_keys(iter, n3, &as->parent_keys,
+ reserve);
+ bch_btree_node_write(c, n3, &as->cl, SIX_LOCK_intent, -1);
+ }
+ } else {
+ trace_bcache_btree_node_compact(c, b, b->nr.live_u64s);
+
+ bch_btree_build_aux_trees(n1);
+ six_unlock_write(&n1->lock);
+
+ bch_keylist_add(&as->parent_keys, &n1->key);
+ }
+
+ bch_btree_node_write(c, n1, &as->cl, SIX_LOCK_intent, -1);
+
+ /* New nodes all written, now make them visible: */
+
+ if (parent) {
+ /* Split a non root node */
+ bch_btree_insert_node(parent, iter, &as->parent_keys,
+ reserve, as);
+ } else if (n3) {
+ bch_btree_set_root(iter, n3, as, reserve);
+ } else {
+ /* Root filled up but didn't need to be split */
+ bch_btree_set_root(iter, n1, as, reserve);
+ }
+
+ btree_open_bucket_put(c, n1);
+ if (n2)
+ btree_open_bucket_put(c, n2);
+ if (n3)
+ btree_open_bucket_put(c, n3);
+
+ /*
+ * Note - at this point other linked iterators could still have @b read
+ * locked; we're depending on the bch_btree_iter_node_replace() calls
+ * below removing all references to @b so we don't return with other
+ * iterators pointing to a node they have locked that's been freed.
+ *
+ * We have to free the node first because the bch_iter_node_replace()
+ * calls will drop _our_ iterator's reference - and intent lock - to @b.
+ */
+ bch_btree_node_free_inmem(iter, b);
+
+ /* Successful split, update the iterator to point to the new nodes: */
+
+ if (n3)
+ bch_btree_iter_node_replace(iter, n3);
+ if (n2)
+ bch_btree_iter_node_replace(iter, n2);
+ bch_btree_iter_node_replace(iter, n1);
+
+ bch_time_stats_update(&c->btree_split_time, start_time);
+}
+
+/**
+ * bch_btree_insert_node - insert bkeys into a given btree node
+ *
+ * @iter: btree iterator
+ * @insert_keys: list of keys to insert
+ * @hook: insert callback
+ * @persistent: if not null, @persistent will wait on journal write
+ *
+ * Inserts as many keys as it can into a given btree node, splitting it if full.
+ * If a split occurred, this function will return early. This can only happen
+ * for leaf nodes -- inserts into interior nodes have to be atomic.
+ */
+void bch_btree_insert_node(struct btree *b,
+ struct btree_iter *iter,
+ struct keylist *insert_keys,
+ struct btree_reserve *reserve,
+ struct btree_interior_update *as)
+{
+ BUG_ON(!b->level);
+ BUG_ON(!reserve || !as);
+
+ switch (bch_btree_insert_keys_interior(b, iter, insert_keys,
+ as, reserve)) {
+ case BTREE_INSERT_OK:
+ break;
+ case BTREE_INSERT_BTREE_NODE_FULL:
+ btree_split(b, iter, insert_keys, reserve, as);
+ break;
+ default:
+ BUG();
+ }
+}
+
+static int bch_btree_split_leaf(struct btree_iter *iter, unsigned flags)
+{
+ struct cache_set *c = iter->c;
+ struct btree *b = iter->nodes[0];
+ struct btree_reserve *reserve;
+ struct btree_interior_update *as;
+ struct closure cl;
+ int ret = 0;
+
+ closure_init_stack(&cl);
+
+ /* Hack, because gc and splitting nodes doesn't mix yet: */
+ if (!down_read_trylock(&c->gc_lock)) {
+ bch_btree_iter_unlock(iter);
+ down_read(&c->gc_lock);
+ }
+
+ /*
+ * XXX: figure out how far we might need to split,
+ * instead of locking/reserving all the way to the root:
+ */
+ if (!bch_btree_iter_set_locks_want(iter, U8_MAX)) {
+ ret = -EINTR;
+ goto out;
+ }
+
+ reserve = bch_btree_reserve_get(c, b, 0, flags, &cl);
+ if (IS_ERR(reserve)) {
+ ret = PTR_ERR(reserve);
+ if (ret == -EAGAIN) {
+ bch_btree_iter_unlock(iter);
+ up_read(&c->gc_lock);
+ closure_sync(&cl);
+ return -EINTR;
+ }
+ goto out;
+ }
+
+ as = bch_btree_interior_update_alloc(c);
+
+ btree_split(b, iter, NULL, reserve, as);
+ bch_btree_reserve_put(c, reserve);
+
+ bch_btree_iter_set_locks_want(iter, 1);
+out:
+ up_read(&c->gc_lock);
+ return ret;
+}
+
+enum btree_node_sibling {
+ btree_prev_sib,
+ btree_next_sib,
+};
+
+static struct btree *btree_node_get_sibling(struct btree_iter *iter,
+ struct btree *b,
+ enum btree_node_sibling sib)
+{
+ struct btree *parent;
+ struct btree_node_iter node_iter;
+ struct bkey_packed *k;
+ BKEY_PADDED(k) tmp;
+ struct btree *ret;
+ unsigned level = b->level;
+
+ parent = iter->nodes[level + 1];
+ if (!parent)
+ return NULL;
+
+ if (!btree_node_relock(iter, level + 1)) {
+ bch_btree_iter_set_locks_want(iter, level + 2);
+ return ERR_PTR(-EINTR);
+ }
+
+ node_iter = iter->node_iters[parent->level];
+
+ k = bch_btree_node_iter_peek_all(&node_iter, parent);
+ BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p));
+
+ do {
+ k = sib == btree_prev_sib
+ ? bch_btree_node_iter_prev_all(&node_iter, parent)
+ : (bch_btree_node_iter_advance(&node_iter, parent),
+ bch_btree_node_iter_peek_all(&node_iter, parent));
+ if (!k)
+ return NULL;
+ } while (bkey_deleted(k));
+
+ bkey_unpack(parent, &tmp.k, k);
+
+ ret = bch_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent);
+
+ if (IS_ERR(ret) && PTR_ERR(ret) == -EINTR) {
+ btree_node_unlock(iter, level);
+ ret = bch_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent);
+ }
+
+ if (!IS_ERR(ret) && !btree_node_relock(iter, level)) {
+ six_unlock_intent(&ret->lock);
+ ret = ERR_PTR(-EINTR);
+ }
+
+ return ret;
+}
+
+static int __foreground_maybe_merge(struct btree_iter *iter,
+ enum btree_node_sibling sib)
+{
+ struct cache_set *c = iter->c;
+ struct btree_reserve *reserve;
+ struct btree_interior_update *as;
+ struct bkey_format_state new_s;
+ struct bkey_format new_f;
+ struct bkey_i delete;
+ struct btree *b, *m, *n, *prev, *next, *parent;
+ struct closure cl;
+ size_t sib_u64s;
+ int ret = 0;
+
+ closure_init_stack(&cl);
+retry:
+ if (!btree_node_relock(iter, iter->level))
+ return 0;
+
+ b = iter->nodes[iter->level];
+
+ parent = iter->nodes[b->level + 1];
+ if (!parent)
+ return 0;
+
+ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
+ return 0;
+
+ /* XXX: can't be holding read locks */
+ m = btree_node_get_sibling(iter, b, sib);
+ if (IS_ERR(m)) {
+ ret = PTR_ERR(m);
+ goto out;
+ }
+
+ /* NULL means no sibling: */
+ if (!m) {
+ b->sib_u64s[sib] = U16_MAX;
+ return 0;
+ }
+
+ if (sib == btree_prev_sib) {
+ prev = m;
+ next = b;
+ } else {
+ prev = b;
+ next = m;
+ }
+
+ bch_bkey_format_init(&new_s);
+ __bch_btree_calc_format(&new_s, b);
+ __bch_btree_calc_format(&new_s, m);
+ new_f = bch_bkey_format_done(&new_s);
+
+ sib_u64s = btree_node_u64s_with_format(b, &new_f) +
+ btree_node_u64s_with_format(m, &new_f);
+
+ if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
+ sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
+ sib_u64s /= 2;
+ sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
+ }
+
+ sib_u64s = min(sib_u64s, btree_max_u64s(c));
+ b->sib_u64s[sib] = sib_u64s;
+
+ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
+ six_unlock_intent(&m->lock);
+ return 0;
+ }
+
+ /* We're changing btree topology, doesn't mix with gc: */
+ if (!down_read_trylock(&c->gc_lock)) {
+ six_unlock_intent(&m->lock);
+ bch_btree_iter_unlock(iter);
+
+ down_read(&c->gc_lock);
+ up_read(&c->gc_lock);
+ ret = -EINTR;
+ goto out;
+ }
+
+ if (!bch_btree_iter_set_locks_want(iter, U8_MAX)) {
+ ret = -EINTR;
+ goto out_unlock;
+ }
+
+ reserve = bch_btree_reserve_get(c, b, 0,
+ BTREE_INSERT_NOFAIL|
+ BTREE_INSERT_USE_RESERVE,
+ &cl);
+ if (IS_ERR(reserve)) {
+ ret = PTR_ERR(reserve);
+ goto out_unlock;
+ }
+
+ as = bch_btree_interior_update_alloc(c);
+
+ bch_btree_interior_update_will_free_node(c, as, b);
+ bch_btree_interior_update_will_free_node(c, as, m);
+
+ n = bch_btree_node_alloc(c, b->level, b->btree_id, reserve);
+ n->data->min_key = prev->data->min_key;
+ n->data->max_key = next->data->max_key;
+ n->data->format = new_f;
+ n->key.k.p = next->key.k.p;
+
+ btree_node_set_format(n, new_f);
+
+ bch_btree_sort_into(c, n, prev);
+ bch_btree_sort_into(c, n, next);
+
+ bch_btree_build_aux_trees(n);
+ six_unlock_write(&n->lock);
+
+ bkey_init(&delete.k);
+ delete.k.p = prev->key.k.p;
+ bch_keylist_add(&as->parent_keys, &delete);
+ bch_keylist_add(&as->parent_keys, &n->key);
+
+ bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
+
+ bch_btree_insert_node(parent, iter, &as->parent_keys, reserve, as);
+
+ btree_open_bucket_put(c, n);
+ bch_btree_node_free_inmem(iter, b);
+ bch_btree_node_free_inmem(iter, m);
+ bch_btree_iter_node_replace(iter, n);
+
+ bch_btree_iter_verify(iter, n);
+
+ bch_btree_reserve_put(c, reserve);
+out_unlock:
+ if (ret != -EINTR && ret != -EAGAIN)
+ bch_btree_iter_set_locks_want(iter, 1);
+ six_unlock_intent(&m->lock);
+ up_read(&c->gc_lock);
+out:
+ if (ret == -EAGAIN || ret == -EINTR) {
+ bch_btree_iter_unlock(iter);
+ ret = -EINTR;
+ }
+
+ closure_sync(&cl);
+
+ if (ret == -EINTR) {
+ ret = bch_btree_iter_traverse(iter);
+ if (!ret)
+ goto retry;
+ }
+
+ return ret;
+}
+
+static int inline foreground_maybe_merge(struct btree_iter *iter,
+ enum btree_node_sibling sib)
+{
+ struct cache_set *c = iter->c;
+ struct btree *b;
+
+ if (!btree_node_locked(iter, iter->level))
+ return 0;
+
+ b = iter->nodes[iter->level];
+ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
+ return 0;
+
+ return __foreground_maybe_merge(iter, sib);
+}
+
+/**
+ * btree_insert_key - insert a key one key into a leaf node
+ */
+static enum btree_insert_ret
+btree_insert_key(struct btree_insert *trans,
+ struct btree_insert_entry *insert)
+{
+ struct cache_set *c = trans->c;
+ struct btree_iter *iter = insert->iter;
+ struct btree *b = iter->nodes[0];
+ enum btree_insert_ret ret;
+ int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
+ int old_live_u64s = b->nr.live_u64s;
+ int live_u64s_added, u64s_added;
+
+ ret = !btree_node_is_extents(b)
+ ? bch_insert_fixup_key(trans, insert)
+ : bch_insert_fixup_extent(trans, insert);
+
+ live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
+ u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
+
+ if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
+ b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
+ if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
+ b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
+
+ if (u64s_added > live_u64s_added &&
+ bch_maybe_compact_whiteouts(iter->c, b))
+ bch_btree_iter_reinit_node(iter, b);
+
+ trace_bcache_btree_insert_key(c, b, insert->k);
+ return ret;
+}
+
+static bool same_leaf_as_prev(struct btree_insert *trans,
+ struct btree_insert_entry *i)
+{
+ /*
+ * Because we sorted the transaction entries, if multiple iterators
+ * point to the same leaf node they'll always be adjacent now:
+ */
+ return i != trans->entries &&
+ i[0].iter->nodes[0] == i[-1].iter->nodes[0];
+}
+
+#define trans_for_each_entry(trans, i) \
+ for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++)
+
+static void multi_lock_write(struct btree_insert *trans)
+{
+ struct btree_insert_entry *i;
+
+ trans_for_each_entry(trans, i)
+ if (!same_leaf_as_prev(trans, i))
+ btree_node_lock_for_insert(i->iter->nodes[0], i->iter);
+}
+
+static void multi_unlock_write(struct btree_insert *trans)
+{
+ struct btree_insert_entry *i;
+
+ trans_for_each_entry(trans, i)
+ if (!same_leaf_as_prev(trans, i))
+ btree_node_unlock_write(i->iter->nodes[0], i->iter);
+}
+
+static int btree_trans_entry_cmp(const void *_l, const void *_r)
+{
+ const struct btree_insert_entry *l = _l;
+ const struct btree_insert_entry *r = _r;
+
+ return btree_iter_cmp(l->iter, r->iter);
+}
+
+/* Normal update interface: */
+
+/**
+ * __bch_btree_insert_at - insert keys at given iterator positions
+ *
+ * This is main entry point for btree updates.
+ *
+ * Return values:
+ * -EINTR: locking changed, this function should be called again. Only returned
+ * if passed BTREE_INSERT_ATOMIC.
+ * -EROFS: cache set read only
+ * -EIO: journal or btree node IO error
+ */
+int __bch_btree_insert_at(struct btree_insert *trans)
+{
+ struct cache_set *c = trans->c;
+ struct btree_insert_entry *i;
+ struct btree_iter *split = NULL;
+ bool cycle_gc_lock = false;
+ unsigned u64s;
+ int ret;
+
+ trans_for_each_entry(trans, i) {
+ EBUG_ON(i->iter->level);
+ EBUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos));
+ }
+
+ sort(trans->entries, trans->nr, sizeof(trans->entries[0]),
+ btree_trans_entry_cmp, NULL);
+
+ if (unlikely(!percpu_ref_tryget(&c->writes)))
+ return -EROFS;
+retry_locks:
+ ret = -EINTR;
+ trans_for_each_entry(trans, i)
+ if (!bch_btree_iter_set_locks_want(i->iter, 1))
+ goto err;
+retry:
+ trans->did_work = false;
+ u64s = 0;
+ trans_for_each_entry(trans, i)
+ if (!i->done)
+ u64s += jset_u64s(i->k->k.u64s);
+
+ memset(&trans->journal_res, 0, sizeof(trans->journal_res));
+
+ ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)
+ ? bch_journal_res_get(&c->journal,
+ &trans->journal_res,
+ u64s, u64s)
+ : 0;
+ if (ret)
+ goto err;
+
+ multi_lock_write(trans);
+
+ u64s = 0;
+ trans_for_each_entry(trans, i) {
+ /* Multiple inserts might go to same leaf: */
+ if (!same_leaf_as_prev(trans, i))
+ u64s = 0;
+
+ /*
+ * bch_btree_node_insert_fits() must be called under write lock:
+ * with only an intent lock, another thread can still call
+ * bch_btree_node_write(), converting an unwritten bset to a
+ * written one
+ */
+ if (!i->done) {
+ u64s += i->k->k.u64s;
+ if (!bch_btree_node_insert_fits(c,
+ i->iter->nodes[0], u64s)) {
+ split = i->iter;
+ goto unlock;
+ }
+ }
+ }
+
+ ret = 0;
+ split = NULL;
+ cycle_gc_lock = false;
+
+ trans_for_each_entry(trans, i) {
+ if (i->done)
+ continue;
+
+ switch (btree_insert_key(trans, i)) {
+ case BTREE_INSERT_OK:
+ i->done = true;
+ break;
+ case BTREE_INSERT_JOURNAL_RES_FULL:
+ case BTREE_INSERT_NEED_TRAVERSE:
+ ret = -EINTR;
+ break;
+ case BTREE_INSERT_NEED_RESCHED:
+ ret = -EAGAIN;
+ break;
+ case BTREE_INSERT_BTREE_NODE_FULL:
+ split = i->iter;
+ break;
+ case BTREE_INSERT_ENOSPC:
+ ret = -ENOSPC;
+ break;
+ case BTREE_INSERT_NEED_GC_LOCK:
+ cycle_gc_lock = true;
+ ret = -EINTR;
+ break;
+ default:
+ BUG();
+ }
+
+ if (!trans->did_work && (ret || split))
+ break;
+ }
+unlock:
+ multi_unlock_write(trans);
+ bch_journal_res_put(&c->journal, &trans->journal_res);
+
+ if (split)
+ goto split;
+ if (ret)
+ goto err;
+
+ /*
+ * hack: iterators are inconsistent when they hit end of leaf, until
+ * traversed again
+ */
+ trans_for_each_entry(trans, i)
+ if (i->iter->at_end_of_leaf)
+ goto out;
+
+ trans_for_each_entry(trans, i)
+ if (!same_leaf_as_prev(trans, i)) {
+ foreground_maybe_merge(i->iter, btree_prev_sib);
+ foreground_maybe_merge(i->iter, btree_next_sib);
+ }
+out:
+ /* make sure we didn't lose an error: */
+ if (!ret && IS_ENABLED(CONFIG_BCACHE_DEBUG))
+ trans_for_each_entry(trans, i)
+ BUG_ON(!i->done);
+
+ percpu_ref_put(&c->writes);
+ return ret;
+split:
+ /*
+ * have to drop journal res before splitting, because splitting means
+ * allocating new btree nodes, and holding a journal reservation
+ * potentially blocks the allocator:
+ */
+ ret = bch_btree_split_leaf(split, trans->flags);
+ if (ret)
+ goto err;
+ /*
+ * if the split didn't have to drop locks the insert will still be
+ * atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked()
+ * and is overwriting won't have changed)
+ */
+ goto retry_locks;
+err:
+ if (cycle_gc_lock) {
+ down_read(&c->gc_lock);
+ up_read(&c->gc_lock);
+ }
+
+ if (ret == -EINTR) {
+ trans_for_each_entry(trans, i) {
+ int ret2 = bch_btree_iter_traverse(i->iter);
+ if (ret2) {
+ ret = ret2;
+ goto out;
+ }
+ }
+
+ /*
+ * BTREE_ITER_ATOMIC means we have to return -EINTR if we
+ * dropped locks:
+ */
+ if (!(trans->flags & BTREE_INSERT_ATOMIC))
+ goto retry;
+ }
+
+ goto out;
+}
+
+int bch_btree_insert_list_at(struct btree_iter *iter,
+ struct keylist *keys,
+ struct disk_reservation *disk_res,
+ struct extent_insert_hook *hook,
+ u64 *journal_seq, unsigned flags)
+{
+ BUG_ON(flags & BTREE_INSERT_ATOMIC);
+ BUG_ON(bch_keylist_empty(keys));
+ verify_keys_sorted(keys);
+
+ while (!bch_keylist_empty(keys)) {
+ /* need to traverse between each insert */
+ int ret = bch_btree_iter_traverse(iter);
+ if (ret)
+ return ret;
+
+ ret = bch_btree_insert_at(iter->c, disk_res, hook,
+ journal_seq, flags,
+ BTREE_INSERT_ENTRY(iter, bch_keylist_front(keys)));
+ if (ret)
+ return ret;
+
+ bch_keylist_pop_front(keys);
+ }
+
+ return 0;
+}
+
+/**
+ * bch_btree_insert_check_key - insert dummy key into btree
+ *
+ * We insert a random key on a cache miss, then compare exchange on it
+ * once the cache promotion or backing device read completes. This
+ * ensures that if this key is written to after the read, the read will
+ * lose and not overwrite the key with stale data.
+ *
+ * Return values:
+ * -EAGAIN: @iter->cl was put on a waitlist waiting for btree node allocation
+ * -EINTR: btree node was changed while upgrading to write lock
+ */
+int bch_btree_insert_check_key(struct btree_iter *iter,
+ struct bkey_i *check_key)
+{
+ struct bpos saved_pos = iter->pos;
+ struct bkey_i_cookie *cookie;
+ BKEY_PADDED(key) tmp;
+ int ret;
+
+ BUG_ON(bkey_cmp(iter->pos, bkey_start_pos(&check_key->k)));
+
+ check_key->k.type = KEY_TYPE_COOKIE;
+ set_bkey_val_bytes(&check_key->k, sizeof(struct bch_cookie));
+
+ cookie = bkey_i_to_cookie(check_key);
+ get_random_bytes(&cookie->v, sizeof(cookie->v));
+
+ bkey_copy(&tmp.key, check_key);
+
+ ret = bch_btree_insert_at(iter->c, NULL, NULL, NULL,
+ BTREE_INSERT_ATOMIC,
+ BTREE_INSERT_ENTRY(iter, &tmp.key));
+
+ bch_btree_iter_rewind(iter, saved_pos);
+
+ return ret;
+}
+
+/**
+ * bch_btree_insert - insert keys into the extent btree
+ * @c: pointer to struct cache_set
+ * @id: btree to insert into
+ * @insert_keys: list of keys to insert
+ * @hook: insert callback
+ */
+int bch_btree_insert(struct cache_set *c, enum btree_id id,
+ struct bkey_i *k,
+ struct disk_reservation *disk_res,
+ struct extent_insert_hook *hook,
+ u64 *journal_seq, int flags)
+{
+ struct btree_iter iter;
+ int ret, ret2;
+
+ bch_btree_iter_init_intent(&iter, c, id, bkey_start_pos(&k->k));
+
+ ret = bch_btree_iter_traverse(&iter);
+ if (unlikely(ret))
+ goto out;
+
+ ret = bch_btree_insert_at(c, disk_res, hook, journal_seq, flags,
+ BTREE_INSERT_ENTRY(&iter, k));
+out: ret2 = bch_btree_iter_unlock(&iter);
+
+ return ret ?: ret2;
+}
+
+/**
+ * bch_btree_update - like bch_btree_insert(), but asserts that we're
+ * overwriting an existing key
+ */
+int bch_btree_update(struct cache_set *c, enum btree_id id,
+ struct bkey_i *k, u64 *journal_seq)
+{
+ struct btree_iter iter;
+ struct bkey_s_c u;
+ int ret;
+
+ EBUG_ON(id == BTREE_ID_EXTENTS);
+
+ bch_btree_iter_init_intent(&iter, c, id, k->k.p);
+
+ u = bch_btree_iter_peek_with_holes(&iter);
+ ret = btree_iter_err(u);
+ if (ret)
+ return ret;
+
+ if (bkey_deleted(u.k)) {
+ bch_btree_iter_unlock(&iter);
+ return -ENOENT;
+ }
+
+ ret = bch_btree_insert_at(c, NULL, NULL, journal_seq, 0,
+ BTREE_INSERT_ENTRY(&iter, k));
+ bch_btree_iter_unlock(&iter);
+ return ret;
+}
+
+/*
+ * bch_btree_delete_range - delete everything within a given range
+ *
+ * Range is a half open interval - [start, end)
+ */
+int bch_btree_delete_range(struct cache_set *c, enum btree_id id,
+ struct bpos start,
+ struct bpos end,
+ u64 version,
+ struct disk_reservation *disk_res,
+ struct extent_insert_hook *hook,
+ u64 *journal_seq)
+{
+ struct btree_iter iter;
+ struct bkey_s_c k;
+ int ret = 0;
+
+ bch_btree_iter_init_intent(&iter, c, id, start);
+
+ while ((k = bch_btree_iter_peek(&iter)).k &&
+ !(ret = btree_iter_err(k))) {
+ unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
+ /* really shouldn't be using a bare, unpadded bkey_i */
+ struct bkey_i delete;
+
+ if (bkey_cmp(iter.pos, end) >= 0)
+ break;
+
+ bkey_init(&delete.k);
+
+ /*
+ * For extents, iter.pos won't necessarily be the same as
+ * bkey_start_pos(k.k) (for non extents they always will be the
+ * same). It's important that we delete starting from iter.pos
+ * because the range we want to delete could start in the middle
+ * of k.
+ *
+ * (bch_btree_iter_peek() does guarantee that iter.pos >=
+ * bkey_start_pos(k.k)).
+ */
+ delete.k.p = iter.pos;
+ delete.k.version = version;
+
+ if (iter.is_extents) {
+ /*
+ * The extents btree is special - KEY_TYPE_DISCARD is
+ * used for deletions, not KEY_TYPE_DELETED. This is an
+ * internal implementation detail that probably
+ * shouldn't be exposed (internally, KEY_TYPE_DELETED is
+ * used as a proxy for k->size == 0):
+ */
+ delete.k.type = KEY_TYPE_DISCARD;
+
+ /* create the biggest key we can */
+ bch_key_resize(&delete.k, max_sectors);
+ bch_cut_back(end, &delete.k);
+ }
+
+ ret = bch_btree_insert_at(c, disk_res, hook, journal_seq,
+ BTREE_INSERT_NOFAIL,
+ BTREE_INSERT_ENTRY(&iter, &delete));
+ if (ret)
+ break;
+
+ bch_btree_iter_cond_resched(&iter);
+ }
+
+ bch_btree_iter_unlock(&iter);
+ return ret;
+}
+
+/**
+ * bch_btree_node_rewrite - Rewrite/move a btree node
+ *
+ * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
+ * btree_check_reserve() has to wait)
+ */
+int bch_btree_node_rewrite(struct btree_iter *iter, struct btree *b,
+ struct closure *cl)
+{
+ struct cache_set *c = iter->c;
+ struct btree *n, *parent = iter->nodes[b->level + 1];
+ struct btree_reserve *reserve;
+ struct btree_interior_update *as;
+ unsigned flags = BTREE_INSERT_NOFAIL;
+
+ /*
+ * if caller is going to wait if allocating reserve fails, then this is
+ * a rewrite that must succeed:
+ */
+ if (cl)
+ flags |= BTREE_INSERT_USE_RESERVE;
+
+ if (!bch_btree_iter_set_locks_want(iter, U8_MAX))
+ return -EINTR;
+
+ reserve = bch_btree_reserve_get(c, b, 0, flags, cl);
+ if (IS_ERR(reserve)) {
+ trace_bcache_btree_gc_rewrite_node_fail(c, b);
+ return PTR_ERR(reserve);
+ }
+
+ as = bch_btree_interior_update_alloc(c);
+
+ bch_btree_interior_update_will_free_node(c, as, b);
+
+ n = btree_node_alloc_replacement(c, b, reserve);
+
+ bch_btree_build_aux_trees(n);
+ six_unlock_write(&n->lock);
+
+ trace_bcache_btree_gc_rewrite_node(c, b);
+
+ bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1);
+
+ if (parent) {
+ bch_btree_insert_node(parent, iter,
+ &keylist_single(&n->key),
+ reserve, as);
+ } else {
+ bch_btree_set_root(iter, n, as, reserve);
+ }
+
+ btree_open_bucket_put(c, n);
+
+ bch_btree_node_free_inmem(iter, b);
+
+ BUG_ON(!bch_btree_iter_node_replace(iter, n));
+
+ bch_btree_reserve_put(c, reserve);
+ return 0;
+}