diff options
Diffstat (limited to 'libbcachefs/btree_io.c')
-rw-r--r-- | libbcachefs/btree_io.c | 1725 |
1 files changed, 1725 insertions, 0 deletions
diff --git a/libbcachefs/btree_io.c b/libbcachefs/btree_io.c new file mode 100644 index 00000000..728cbcd9 --- /dev/null +++ b/libbcachefs/btree_io.c @@ -0,0 +1,1725 @@ + +#include "bcachefs.h" +#include "bkey_methods.h" +#include "btree_cache.h" +#include "btree_update.h" +#include "btree_io.h" +#include "btree_iter.h" +#include "btree_locking.h" +#include "buckets.h" +#include "checksum.h" +#include "debug.h" +#include "error.h" +#include "extents.h" +#include "io.h" +#include "journal.h" +#include "super-io.h" + +#include <trace/events/bcachefs.h> + +static void verify_no_dups(struct btree *b, + struct bkey_packed *start, + struct bkey_packed *end) +{ +#ifdef CONFIG_BCACHEFS_DEBUG + struct bkey_packed *k; + + for (k = start; k != end && bkey_next(k) != end; k = bkey_next(k)) { + struct bkey l = bkey_unpack_key(b, k); + struct bkey r = bkey_unpack_key(b, bkey_next(k)); + + BUG_ON(btree_node_is_extents(b) + ? bkey_cmp(l.p, bkey_start_pos(&r)) > 0 + : bkey_cmp(l.p, bkey_start_pos(&r)) >= 0); + //BUG_ON(bkey_cmp_packed(&b->format, k, bkey_next(k)) >= 0); + } +#endif +} + +static void clear_needs_whiteout(struct bset *i) +{ + struct bkey_packed *k; + + for (k = i->start; k != vstruct_last(i); k = bkey_next(k)) + k->needs_whiteout = false; +} + +static void set_needs_whiteout(struct bset *i) +{ + struct bkey_packed *k; + + for (k = i->start; k != vstruct_last(i); k = bkey_next(k)) + k->needs_whiteout = true; +} + +static void btree_bounce_free(struct bch_fs *c, unsigned order, + bool used_mempool, void *p) +{ + if (used_mempool) + mempool_free(virt_to_page(p), &c->btree_bounce_pool); + else + free_pages((unsigned long) p, order); +} + +static void *btree_bounce_alloc(struct bch_fs *c, unsigned order, + bool *used_mempool) +{ + void *p; + + BUG_ON(1 << order > btree_pages(c)); + + *used_mempool = false; + p = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order); + if (p) + return p; + + *used_mempool = true; + return page_address(mempool_alloc(&c->btree_bounce_pool, GFP_NOIO)); +} + +typedef int (*sort_cmp_fn)(struct btree *, + struct bkey_packed *, + struct bkey_packed *); + +struct sort_iter { + struct btree *b; + unsigned used; + + struct sort_iter_set { + struct bkey_packed *k, *end; + } data[MAX_BSETS + 1]; +}; + +static void sort_iter_init(struct sort_iter *iter, struct btree *b) +{ + memset(iter, 0, sizeof(*iter)); + iter->b = b; +} + +static inline void __sort_iter_sift(struct sort_iter *iter, + unsigned from, + sort_cmp_fn cmp) +{ + unsigned i; + + for (i = from; + i + 1 < iter->used && + cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0; + i++) + swap(iter->data[i], iter->data[i + 1]); +} + +static inline void sort_iter_sift(struct sort_iter *iter, sort_cmp_fn cmp) +{ + + __sort_iter_sift(iter, 0, cmp); +} + +static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp) +{ + unsigned i = iter->used; + + while (i--) + __sort_iter_sift(iter, i, cmp); +} + +static void sort_iter_add(struct sort_iter *iter, + struct bkey_packed *k, + struct bkey_packed *end) +{ + BUG_ON(iter->used >= ARRAY_SIZE(iter->data)); + + if (k != end) + iter->data[iter->used++] = (struct sort_iter_set) { k, end }; +} + +static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter) +{ + return iter->used ? iter->data->k : NULL; +} + +static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp) +{ + iter->data->k = bkey_next(iter->data->k); + + BUG_ON(iter->data->k > iter->data->end); + + if (iter->data->k == iter->data->end) + memmove(&iter->data[0], + &iter->data[1], + sizeof(iter->data[0]) * --iter->used); + else + sort_iter_sift(iter, cmp); +} + +static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter, + sort_cmp_fn cmp) +{ + struct bkey_packed *ret = sort_iter_peek(iter); + + if (ret) + sort_iter_advance(iter, cmp); + + return ret; +} + +static inline int sort_key_whiteouts_cmp(struct btree *b, + struct bkey_packed *l, + struct bkey_packed *r) +{ + return bkey_cmp_packed(b, l, r); +} + +static unsigned sort_key_whiteouts(struct bkey_packed *dst, + struct sort_iter *iter) +{ + struct bkey_packed *in, *out = dst; + + sort_iter_sort(iter, sort_key_whiteouts_cmp); + + while ((in = sort_iter_next(iter, sort_key_whiteouts_cmp))) { + bkey_copy(out, in); + out = bkey_next(out); + } + + return (u64 *) out - (u64 *) dst; +} + +static inline int sort_extent_whiteouts_cmp(struct btree *b, + struct bkey_packed *l, + struct bkey_packed *r) +{ + struct bkey ul = bkey_unpack_key(b, l); + struct bkey ur = bkey_unpack_key(b, r); + + return bkey_cmp(bkey_start_pos(&ul), bkey_start_pos(&ur)); +} + +static unsigned sort_extent_whiteouts(struct bkey_packed *dst, + struct sort_iter *iter) +{ + const struct bkey_format *f = &iter->b->format; + struct bkey_packed *in, *out = dst; + struct bkey_i l, r; + bool prev = false, l_packed = false; + u64 max_packed_size = bkey_field_max(f, BKEY_FIELD_SIZE); + u64 max_packed_offset = bkey_field_max(f, BKEY_FIELD_OFFSET); + u64 new_size; + + max_packed_size = min_t(u64, max_packed_size, KEY_SIZE_MAX); + + sort_iter_sort(iter, sort_extent_whiteouts_cmp); + + while ((in = sort_iter_next(iter, sort_extent_whiteouts_cmp))) { + EBUG_ON(bkeyp_val_u64s(f, in)); + EBUG_ON(in->type != KEY_TYPE_DISCARD); + + r.k = bkey_unpack_key(iter->b, in); + + if (prev && + bkey_cmp(l.k.p, bkey_start_pos(&r.k)) >= 0) { + if (bkey_cmp(l.k.p, r.k.p) >= 0) + continue; + + new_size = l_packed + ? min(max_packed_size, max_packed_offset - + bkey_start_offset(&l.k)) + : KEY_SIZE_MAX; + + new_size = min(new_size, r.k.p.offset - + bkey_start_offset(&l.k)); + + BUG_ON(new_size < l.k.size); + + bch2_key_resize(&l.k, new_size); + + if (bkey_cmp(l.k.p, r.k.p) >= 0) + continue; + + bch2_cut_front(l.k.p, &r); + } + + if (prev) { + if (!bch2_bkey_pack(out, &l, f)) { + BUG_ON(l_packed); + bkey_copy(out, &l); + } + out = bkey_next(out); + } + + l = r; + prev = true; + l_packed = bkey_packed(in); + } + + if (prev) { + if (!bch2_bkey_pack(out, &l, f)) { + BUG_ON(l_packed); + bkey_copy(out, &l); + } + out = bkey_next(out); + } + + return (u64 *) out - (u64 *) dst; +} + +static unsigned should_compact_bset(struct btree *b, struct bset_tree *t, + bool compacting, + enum compact_mode mode) +{ + unsigned live_u64s = b->nr.bset_u64s[t - b->set]; + unsigned bset_u64s = le16_to_cpu(bset(b, t)->u64s); + + if (live_u64s == bset_u64s) + return 0; + + if (mode == COMPACT_LAZY) { + if (live_u64s * 4 < bset_u64s * 3 || + (compacting && bset_unwritten(b, bset(b, t)))) + return bset_u64s - live_u64s; + } else { + if (bset_written(b, bset(b, t))) + return bset_u64s - live_u64s; + } + + return 0; +} + +bool __bch2_compact_whiteouts(struct bch_fs *c, struct btree *b, + enum compact_mode mode) +{ + const struct bkey_format *f = &b->format; + struct bset_tree *t; + struct bkey_packed *whiteouts = NULL; + struct bkey_packed *u_start, *u_pos; + struct sort_iter sort_iter; + unsigned order, whiteout_u64s = 0, u64s; + bool used_mempool, compacting = false; + + for_each_bset(b, t) + whiteout_u64s += should_compact_bset(b, t, + whiteout_u64s != 0, mode); + + if (!whiteout_u64s) + return false; + + sort_iter_init(&sort_iter, b); + + whiteout_u64s += b->whiteout_u64s; + order = get_order(whiteout_u64s * sizeof(u64)); + + whiteouts = btree_bounce_alloc(c, order, &used_mempool); + u_start = u_pos = whiteouts; + + memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b), + b->whiteout_u64s); + u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64); + + sort_iter_add(&sort_iter, u_start, u_pos); + + for_each_bset(b, t) { + struct bset *i = bset(b, t); + struct bkey_packed *k, *n, *out, *start, *end; + struct btree_node_entry *src = NULL, *dst = NULL; + + if (t != b->set && bset_unwritten(b, i)) { + src = container_of(i, struct btree_node_entry, keys); + dst = max(write_block(b), + (void *) btree_bkey_last(b, t -1)); + } + + if (!should_compact_bset(b, t, compacting, mode)) { + if (src != dst) { + memmove(dst, src, sizeof(*src) + + le16_to_cpu(src->keys.u64s) * + sizeof(u64)); + i = &dst->keys; + set_btree_bset(b, t, i); + } + continue; + } + + compacting = true; + u_start = u_pos; + start = i->start; + end = vstruct_last(i); + + if (src != dst) { + memmove(dst, src, sizeof(*src)); + i = &dst->keys; + set_btree_bset(b, t, i); + } + + out = i->start; + + for (k = start; k != end; k = n) { + n = bkey_next(k); + + if (bkey_deleted(k) && btree_node_is_extents(b)) + continue; + + if (bkey_whiteout(k) && !k->needs_whiteout) + continue; + + if (bkey_whiteout(k)) { + unreserve_whiteout(b, t, k); + memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k)); + set_bkeyp_val_u64s(f, u_pos, 0); + u_pos = bkey_next(u_pos); + } else if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) { + bkey_copy(out, k); + out = bkey_next(out); + } + } + + sort_iter_add(&sort_iter, u_start, u_pos); + + if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) { + i->u64s = cpu_to_le16((u64 *) out - i->_data); + set_btree_bset_end(b, t); + bch2_bset_set_no_aux_tree(b, t); + } + } + + b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts; + + BUG_ON((void *) unwritten_whiteouts_start(c, b) < + (void *) btree_bkey_last(b, bset_tree_last(b))); + + u64s = btree_node_is_extents(b) + ? sort_extent_whiteouts(unwritten_whiteouts_start(c, b), + &sort_iter) + : sort_key_whiteouts(unwritten_whiteouts_start(c, b), + &sort_iter); + + BUG_ON(u64s > b->whiteout_u64s); + BUG_ON(u64s != b->whiteout_u64s && !btree_node_is_extents(b)); + BUG_ON(u_pos != whiteouts && !u64s); + + if (u64s != b->whiteout_u64s) { + void *src = unwritten_whiteouts_start(c, b); + + b->whiteout_u64s = u64s; + memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s); + } + + verify_no_dups(b, + unwritten_whiteouts_start(c, b), + unwritten_whiteouts_end(c, b)); + + btree_bounce_free(c, order, used_mempool, whiteouts); + + if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) + bch2_btree_build_aux_trees(b); + + bch_btree_keys_u64s_remaining(c, b); + bch2_verify_btree_nr_keys(b); + + return true; +} + +static bool bch2_drop_whiteouts(struct btree *b) +{ + struct bset_tree *t; + bool ret = false; + + for_each_bset(b, t) { + struct bset *i = bset(b, t); + struct bkey_packed *k, *n, *out, *start, *end; + + if (!should_compact_bset(b, t, true, true)) + continue; + + start = btree_bkey_first(b, t); + end = btree_bkey_last(b, t); + + if (bset_unwritten(b, i) && + t != b->set) { + struct bset *dst = + max_t(struct bset *, write_block(b), + (void *) btree_bkey_last(b, t -1)); + + memmove(dst, i, sizeof(struct bset)); + i = dst; + set_btree_bset(b, t, i); + } + + out = i->start; + + for (k = start; k != end; k = n) { + n = bkey_next(k); + + if (!bkey_whiteout(k)) { + bkey_copy(out, k); + out = bkey_next(out); + } + } + + i->u64s = cpu_to_le16((u64 *) out - i->_data); + bch2_bset_set_no_aux_tree(b, t); + ret = true; + } + + bch2_verify_btree_nr_keys(b); + + return ret; +} + +static inline int sort_keys_cmp(struct btree *b, + struct bkey_packed *l, + struct bkey_packed *r) +{ + return bkey_cmp_packed(b, l, r) ?: + (int) bkey_whiteout(r) - (int) bkey_whiteout(l) ?: + (int) l->needs_whiteout - (int) r->needs_whiteout; +} + +static unsigned sort_keys(struct bkey_packed *dst, + struct sort_iter *iter, + bool filter_whiteouts) +{ + const struct bkey_format *f = &iter->b->format; + struct bkey_packed *in, *next, *out = dst; + + sort_iter_sort(iter, sort_keys_cmp); + + while ((in = sort_iter_next(iter, sort_keys_cmp))) { + if (bkey_whiteout(in) && + (filter_whiteouts || !in->needs_whiteout)) + continue; + + if (bkey_whiteout(in) && + (next = sort_iter_peek(iter)) && + !bkey_cmp_packed(iter->b, in, next)) { + BUG_ON(in->needs_whiteout && + next->needs_whiteout); + /* + * XXX racy, called with read lock from write path + * + * leads to spurious BUG_ON() in bkey_unpack_key() in + * debug mode + */ + next->needs_whiteout |= in->needs_whiteout; + continue; + } + + if (bkey_whiteout(in)) { + memcpy_u64s(out, in, bkeyp_key_u64s(f, in)); + set_bkeyp_val_u64s(f, out, 0); + } else { + bkey_copy(out, in); + } + out = bkey_next(out); + } + + return (u64 *) out - (u64 *) dst; +} + +static inline int sort_extents_cmp(struct btree *b, + struct bkey_packed *l, + struct bkey_packed *r) +{ + return bkey_cmp_packed(b, l, r) ?: + (int) bkey_deleted(l) - (int) bkey_deleted(r); +} + +static unsigned sort_extents(struct bkey_packed *dst, + struct sort_iter *iter, + bool filter_whiteouts) +{ + struct bkey_packed *in, *out = dst; + + sort_iter_sort(iter, sort_extents_cmp); + + while ((in = sort_iter_next(iter, sort_extents_cmp))) { + if (bkey_deleted(in)) + continue; + + if (bkey_whiteout(in) && + (filter_whiteouts || !in->needs_whiteout)) + continue; + + bkey_copy(out, in); + out = bkey_next(out); + } + + return (u64 *) out - (u64 *) dst; +} + +static void btree_node_sort(struct bch_fs *c, struct btree *b, + struct btree_iter *iter, + unsigned start_idx, + unsigned end_idx, + bool filter_whiteouts) +{ + struct btree_node *out; + struct sort_iter sort_iter; + struct bset_tree *t; + struct bset *start_bset = bset(b, &b->set[start_idx]); + bool used_mempool = false; + u64 start_time; + unsigned i, u64s = 0, order, shift = end_idx - start_idx - 1; + bool sorting_entire_node = start_idx == 0 && + end_idx == b->nsets; + + sort_iter_init(&sort_iter, b); + + for (t = b->set + start_idx; + t < b->set + end_idx; + t++) { + u64s += le16_to_cpu(bset(b, t)->u64s); + sort_iter_add(&sort_iter, + btree_bkey_first(b, t), + btree_bkey_last(b, t)); + } + + order = sorting_entire_node + ? btree_page_order(c) + : get_order(__vstruct_bytes(struct btree_node, u64s)); + + out = btree_bounce_alloc(c, order, &used_mempool); + + start_time = local_clock(); + + if (btree_node_is_extents(b)) + filter_whiteouts = bset_written(b, start_bset); + + u64s = btree_node_is_extents(b) + ? sort_extents(out->keys.start, &sort_iter, filter_whiteouts) + : sort_keys(out->keys.start, &sort_iter, filter_whiteouts); + + out->keys.u64s = cpu_to_le16(u64s); + + BUG_ON(vstruct_end(&out->keys) > (void *) out + (PAGE_SIZE << order)); + + if (sorting_entire_node) + bch2_time_stats_update(&c->btree_sort_time, start_time); + + /* Make sure we preserve bset journal_seq: */ + for (t = b->set + start_idx + 1; + t < b->set + end_idx; + t++) + start_bset->journal_seq = + max(start_bset->journal_seq, + bset(b, t)->journal_seq); + + if (sorting_entire_node) { + unsigned u64s = le16_to_cpu(out->keys.u64s); + + BUG_ON(order != btree_page_order(c)); + + /* + * Our temporary buffer is the same size as the btree node's + * buffer, we can just swap buffers instead of doing a big + * memcpy() + */ + *out = *b->data; + out->keys.u64s = cpu_to_le16(u64s); + swap(out, b->data); + set_btree_bset(b, b->set, &b->data->keys); + } else { + start_bset->u64s = out->keys.u64s; + memcpy_u64s(start_bset->start, + out->keys.start, + le16_to_cpu(out->keys.u64s)); + } + + for (i = start_idx + 1; i < end_idx; i++) + b->nr.bset_u64s[start_idx] += + b->nr.bset_u64s[i]; + + b->nsets -= shift; + + for (i = start_idx + 1; i < b->nsets; i++) { + b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift]; + b->set[i] = b->set[i + shift]; + } + + for (i = b->nsets; i < MAX_BSETS; i++) + b->nr.bset_u64s[i] = 0; + + set_btree_bset_end(b, &b->set[start_idx]); + bch2_bset_set_no_aux_tree(b, &b->set[start_idx]); + + btree_bounce_free(c, order, used_mempool, out); + + bch2_verify_btree_nr_keys(b); +} + +/* Sort + repack in a new format: */ +static struct btree_nr_keys sort_repack(struct bset *dst, + struct btree *src, + struct btree_node_iter *src_iter, + struct bkey_format *out_f, + bool filter_whiteouts) +{ + struct bkey_format *in_f = &src->format; + struct bkey_packed *in, *out = vstruct_last(dst); + struct btree_nr_keys nr; + + memset(&nr, 0, sizeof(nr)); + + while ((in = bch2_btree_node_iter_next_all(src_iter, src))) { + if (filter_whiteouts && bkey_whiteout(in)) + continue; + + if (bch2_bkey_transform(out_f, out, bkey_packed(in) + ? in_f : &bch2_bkey_format_current, in)) + out->format = KEY_FORMAT_LOCAL_BTREE; + else + bch2_bkey_unpack(src, (void *) out, in); + + btree_keys_account_key_add(&nr, 0, out); + out = bkey_next(out); + } + + dst->u64s = cpu_to_le16((u64 *) out - dst->_data); + return nr; +} + +/* Sort, repack, and merge: */ +static struct btree_nr_keys sort_repack_merge(struct bch_fs *c, + struct bset *dst, + struct btree *src, + struct btree_node_iter *iter, + struct bkey_format *out_f, + bool filter_whiteouts, + key_filter_fn filter, + key_merge_fn merge) +{ + struct bkey_packed *k, *prev = NULL, *out; + struct btree_nr_keys nr; + BKEY_PADDED(k) tmp; + + memset(&nr, 0, sizeof(nr)); + + while ((k = bch2_btree_node_iter_next_all(iter, src))) { + if (filter_whiteouts && bkey_whiteout(k)) + continue; + + /* + * The filter might modify pointers, so we have to unpack the + * key and values to &tmp.k: + */ + bch2_bkey_unpack(src, &tmp.k, k); + + if (filter && filter(c, src, bkey_i_to_s(&tmp.k))) + continue; + + /* prev is always unpacked, for key merging: */ + + if (prev && + merge && + merge(c, src, (void *) prev, &tmp.k) == BCH_MERGE_MERGE) + continue; + + /* + * the current key becomes the new prev: advance prev, then + * copy the current key - but first pack prev (in place): + */ + if (prev) { + bch2_bkey_pack(prev, (void *) prev, out_f); + + btree_keys_account_key_add(&nr, 0, prev); + prev = bkey_next(prev); + } else { + prev = vstruct_last(dst); + } + + bkey_copy(prev, &tmp.k); + } + + if (prev) { + bch2_bkey_pack(prev, (void *) prev, out_f); + btree_keys_account_key_add(&nr, 0, prev); + out = bkey_next(prev); + } else { + out = vstruct_last(dst); + } + + dst->u64s = cpu_to_le16((u64 *) out - dst->_data); + return nr; +} + +void bch2_btree_sort_into(struct bch_fs *c, + struct btree *dst, + struct btree *src) +{ + struct btree_nr_keys nr; + struct btree_node_iter src_iter; + u64 start_time = local_clock(); + + BUG_ON(dst->nsets != 1); + + bch2_bset_set_no_aux_tree(dst, dst->set); + + bch2_btree_node_iter_init_from_start(&src_iter, src, + btree_node_is_extents(src)); + + if (btree_node_ops(src)->key_normalize || + btree_node_ops(src)->key_merge) + nr = sort_repack_merge(c, btree_bset_first(dst), + src, &src_iter, + &dst->format, + true, + btree_node_ops(src)->key_normalize, + btree_node_ops(src)->key_merge); + else + nr = sort_repack(btree_bset_first(dst), + src, &src_iter, + &dst->format, + true); + + bch2_time_stats_update(&c->btree_sort_time, start_time); + + set_btree_bset_end(dst, dst->set); + + dst->nr.live_u64s += nr.live_u64s; + dst->nr.bset_u64s[0] += nr.bset_u64s[0]; + dst->nr.packed_keys += nr.packed_keys; + dst->nr.unpacked_keys += nr.unpacked_keys; + + bch2_verify_btree_nr_keys(dst); +} + +#define SORT_CRIT (4096 / sizeof(u64)) + +/* + * We're about to add another bset to the btree node, so if there's currently + * too many bsets - sort some of them together: + */ +static bool btree_node_compact(struct bch_fs *c, struct btree *b, + struct btree_iter *iter) +{ + unsigned unwritten_idx; + bool ret = false; + + for (unwritten_idx = 0; + unwritten_idx < b->nsets; + unwritten_idx++) + if (bset_unwritten(b, bset(b, &b->set[unwritten_idx]))) + break; + + if (b->nsets - unwritten_idx > 1) { + btree_node_sort(c, b, iter, unwritten_idx, + b->nsets, false); + ret = true; + } + + if (unwritten_idx > 1) { + btree_node_sort(c, b, iter, 0, unwritten_idx, false); + ret = true; + } + + return ret; +} + +void bch2_btree_build_aux_trees(struct btree *b) +{ + struct bset_tree *t; + + for_each_bset(b, t) + bch2_bset_build_aux_tree(b, t, + bset_unwritten(b, bset(b, t)) && + t == bset_tree_last(b)); +} + +/* + * @bch_btree_init_next - initialize a new (unwritten) bset that can then be + * inserted into + * + * Safe to call if there already is an unwritten bset - will only add a new bset + * if @b doesn't already have one. + * + * Returns true if we sorted (i.e. invalidated iterators + */ +void bch2_btree_init_next(struct bch_fs *c, struct btree *b, + struct btree_iter *iter) +{ + struct btree_node_entry *bne; + bool did_sort; + + EBUG_ON(!(b->lock.state.seq & 1)); + EBUG_ON(iter && iter->nodes[b->level] != b); + + did_sort = btree_node_compact(c, b, iter); + + bne = want_new_bset(c, b); + if (bne) + bch2_bset_init_next(b, &bne->keys); + + bch2_btree_build_aux_trees(b); + + if (iter && did_sort) + bch2_btree_iter_reinit_node(iter, b); +} + +static struct nonce btree_nonce(struct btree *b, + struct bset *i, + unsigned offset) +{ + return (struct nonce) {{ + [0] = cpu_to_le32(offset), + [1] = ((__le32 *) &i->seq)[0], + [2] = ((__le32 *) &i->seq)[1], + [3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE, + }}; +} + +static void bset_encrypt(struct bch_fs *c, struct bset *i, struct nonce nonce) +{ + bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data, + vstruct_end(i) - (void *) i->_data); +} + +#define btree_node_error(b, c, ptr, fmt, ...) \ + bch2_fs_inconsistent(c, \ + "btree node error at btree %u level %u/%u bucket %zu block %u u64s %u: " fmt,\ + (b)->btree_id, (b)->level, btree_node_root(c, b) \ + ? btree_node_root(c, b)->level : -1, \ + PTR_BUCKET_NR(ca, ptr), (b)->written, \ + le16_to_cpu((i)->u64s), ##__VA_ARGS__) + +static const char *validate_bset(struct bch_fs *c, struct btree *b, + struct bch_dev *ca, + const struct bch_extent_ptr *ptr, + struct bset *i, unsigned sectors, + unsigned *whiteout_u64s) +{ + struct bkey_packed *k, *prev = NULL; + struct bpos prev_pos = POS_MIN; + bool seen_non_whiteout = false; + + if (le16_to_cpu(i->version) != BCACHE_BSET_VERSION) + return "unsupported bset version"; + + if (b->written + sectors > c->sb.btree_node_size) + return "bset past end of btree node"; + + if (i != &b->data->keys && !i->u64s) + btree_node_error(b, c, ptr, "empty set"); + + if (!BSET_SEPARATE_WHITEOUTS(i)) { + seen_non_whiteout = true; + whiteout_u64s = 0; + } + + for (k = i->start; + k != vstruct_last(i);) { + struct bkey_s_c u; + struct bkey tmp; + const char *invalid; + + if (!k->u64s) { + btree_node_error(b, c, ptr, + "KEY_U64s 0: %zu bytes of metadata lost", + vstruct_end(i) - (void *) k); + + i->u64s = cpu_to_le16((u64 *) k - i->_data); + break; + } + + if (bkey_next(k) > vstruct_last(i)) { + btree_node_error(b, c, ptr, + "key extends past end of bset"); + + i->u64s = cpu_to_le16((u64 *) k - i->_data); + break; + } + + if (k->format > KEY_FORMAT_CURRENT) { + btree_node_error(b, c, ptr, + "invalid bkey format %u", k->format); + + i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); + memmove_u64s_down(k, bkey_next(k), + (u64 *) vstruct_end(i) - (u64 *) k); + continue; + } + + if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) + bch2_bkey_swab(btree_node_type(b), &b->format, k); + + u = bkey_disassemble(b, k, &tmp); + + invalid = bch2_btree_bkey_invalid(c, b, u); + if (invalid) { + char buf[160]; + + bch2_bkey_val_to_text(c, btree_node_type(b), + buf, sizeof(buf), u); + btree_node_error(b, c, ptr, + "invalid bkey %s: %s", buf, invalid); + + i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); + memmove_u64s_down(k, bkey_next(k), + (u64 *) vstruct_end(i) - (u64 *) k); + continue; + } + + /* + * with the separate whiteouts thing (used for extents), the + * second set of keys actually can have whiteouts too, so we + * can't solely go off bkey_whiteout()... + */ + + if (!seen_non_whiteout && + (!bkey_whiteout(k) || + (bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0))) { + *whiteout_u64s = k->_data - i->_data; + seen_non_whiteout = true; + } else if (bkey_cmp(prev_pos, bkey_start_pos(u.k)) > 0) { + btree_node_error(b, c, ptr, + "keys out of order: %llu:%llu > %llu:%llu", + prev_pos.inode, + prev_pos.offset, + u.k->p.inode, + bkey_start_offset(u.k)); + /* XXX: repair this */ + } + + prev_pos = u.k->p; + prev = k; + k = bkey_next(k); + } + + SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); + return NULL; +} + +static bool extent_contains_ptr(struct bkey_s_c_extent e, + struct bch_extent_ptr match) +{ + const struct bch_extent_ptr *ptr; + + extent_for_each_ptr(e, ptr) + if (!memcmp(ptr, &match, sizeof(*ptr))) + return true; + + return false; +} + +void bch2_btree_node_read_done(struct bch_fs *c, struct btree *b, + struct bch_dev *ca, + const struct bch_extent_ptr *ptr) +{ + struct btree_node_entry *bne; + struct bset *i = &b->data->keys; + struct btree_node_iter *iter; + struct btree_node *sorted; + bool used_mempool; + unsigned u64s; + const char *err; + struct bch_csum csum; + struct nonce nonce; + int ret; + + iter = mempool_alloc(&c->fill_iter, GFP_NOIO); + __bch2_btree_node_iter_init(iter, btree_node_is_extents(b)); + + err = "dynamic fault"; + if (bch2_meta_read_fault("btree")) + goto err; + + while (b->written < c->sb.btree_node_size) { + unsigned sectors, whiteout_u64s = 0; + + if (!b->written) { + i = &b->data->keys; + + err = "bad magic"; + if (le64_to_cpu(b->data->magic) != bset_magic(c)) + goto err; + + err = "bad btree header"; + if (!b->data->keys.seq) + goto err; + + err = "unknown checksum type"; + if (!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i))) + goto err; + + /* XXX: retry checksum errors */ + + nonce = btree_nonce(b, i, b->written << 9); + csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data); + + err = "bad checksum"; + if (bch2_crc_cmp(csum, b->data->csum)) + goto err; + + bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, + &b->data->flags, + (void *) &b->data->keys - + (void *) &b->data->flags); + nonce = nonce_add(nonce, + round_up((void *) &b->data->keys - + (void *) &b->data->flags, + CHACHA20_BLOCK_SIZE)); + bset_encrypt(c, i, nonce); + + sectors = vstruct_sectors(b->data, c->block_bits); + + if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) { + u64 *p = (u64 *) &b->data->ptr; + + *p = swab64(*p); + bch2_bpos_swab(&b->data->min_key); + bch2_bpos_swab(&b->data->max_key); + } + + err = "incorrect btree id"; + if (BTREE_NODE_ID(b->data) != b->btree_id) + goto err; + + err = "incorrect level"; + if (BTREE_NODE_LEVEL(b->data) != b->level) + goto err; + + err = "incorrect max key"; + if (bkey_cmp(b->data->max_key, b->key.k.p)) + goto err; + + err = "incorrect backpointer"; + if (!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key), + b->data->ptr)) + goto err; + + err = bch2_bkey_format_validate(&b->data->format); + if (err) + goto err; + + set_btree_bset(b, b->set, &b->data->keys); + + btree_node_set_format(b, b->data->format); + } else { + bne = write_block(b); + i = &bne->keys; + + if (i->seq != b->data->keys.seq) + break; + + err = "unknown checksum type"; + if (!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i))) + goto err; + + nonce = btree_nonce(b, i, b->written << 9); + csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); + + err = "bad checksum"; + if (memcmp(&csum, &bne->csum, sizeof(csum))) + goto err; + + bset_encrypt(c, i, nonce); + + sectors = vstruct_sectors(bne, c->block_bits); + } + + err = validate_bset(c, b, ca, ptr, i, sectors, &whiteout_u64s); + if (err) + goto err; + + b->written += sectors; + + err = "insufficient memory"; + ret = bch2_journal_seq_should_ignore(c, le64_to_cpu(i->journal_seq), b); + if (ret < 0) + goto err; + + if (ret) + continue; + + __bch2_btree_node_iter_push(iter, b, + i->start, + vstruct_idx(i, whiteout_u64s)); + + __bch2_btree_node_iter_push(iter, b, + vstruct_idx(i, whiteout_u64s), + vstruct_last(i)); + } + + err = "corrupted btree"; + for (bne = write_block(b); + bset_byte_offset(b, bne) < btree_bytes(c); + bne = (void *) bne + block_bytes(c)) + if (bne->keys.seq == b->data->keys.seq) + goto err; + + sorted = btree_bounce_alloc(c, ilog2(btree_pages(c)), &used_mempool); + sorted->keys.u64s = 0; + + b->nr = btree_node_is_extents(b) + ? bch2_extent_sort_fix_overlapping(c, &sorted->keys, b, iter) + : bch2_key_sort_fix_overlapping(&sorted->keys, b, iter); + + u64s = le16_to_cpu(sorted->keys.u64s); + *sorted = *b->data; + sorted->keys.u64s = cpu_to_le16(u64s); + swap(sorted, b->data); + set_btree_bset(b, b->set, &b->data->keys); + b->nsets = 1; + + BUG_ON(b->nr.live_u64s != u64s); + + btree_bounce_free(c, ilog2(btree_pages(c)), used_mempool, sorted); + + bch2_bset_build_aux_tree(b, b->set, false); + + set_needs_whiteout(btree_bset_first(b)); + + btree_node_reset_sib_u64s(b); +out: + mempool_free(iter, &c->fill_iter); + return; +err: + set_btree_node_read_error(b); + btree_node_error(b, c, ptr, "%s", err); + goto out; +} + +void bch2_btree_node_read(struct bch_fs *c, struct btree *b) +{ + uint64_t start_time = local_clock(); + struct bio *bio; + struct extent_pick_ptr pick; + + trace_btree_read(c, b); + + pick = bch2_btree_pick_ptr(c, b); + if (bch2_fs_fatal_err_on(!pick.ca, c, + "no cache device for btree node")) { + set_btree_node_read_error(b); + return; + } + + bio = bio_alloc_bioset(GFP_NOIO, btree_pages(c), &c->btree_read_bio); + bio->bi_bdev = pick.ca->disk_sb.bdev; + bio->bi_iter.bi_sector = pick.ptr.offset; + bio->bi_iter.bi_size = btree_bytes(c); + bio_set_op_attrs(bio, REQ_OP_READ, REQ_META|READ_SYNC); + bch2_bio_map(bio, b->data); + + submit_bio_wait(bio); + + if (bch2_dev_fatal_io_err_on(bio->bi_error, + pick.ca, "IO error reading bucket %zu", + PTR_BUCKET_NR(pick.ca, &pick.ptr)) || + bch2_meta_read_fault("btree")) { + set_btree_node_read_error(b); + goto out; + } + + bch2_btree_node_read_done(c, b, pick.ca, &pick.ptr); + bch2_time_stats_update(&c->btree_read_time, start_time); +out: + bio_put(bio); + percpu_ref_put(&pick.ca->io_ref); +} + +int bch2_btree_root_read(struct bch_fs *c, enum btree_id id, + const struct bkey_i *k, unsigned level) +{ + struct closure cl; + struct btree *b; + int ret; + + closure_init_stack(&cl); + + do { + ret = bch2_btree_node_cannibalize_lock(c, &cl); + closure_sync(&cl); + } while (ret); + + b = bch2_btree_node_mem_alloc(c); + bch2_btree_node_cannibalize_unlock(c); + + BUG_ON(IS_ERR(b)); + + bkey_copy(&b->key, k); + BUG_ON(bch2_btree_node_hash_insert(c, b, level, id)); + + bch2_btree_node_read(c, b); + six_unlock_write(&b->lock); + + if (btree_node_read_error(b)) { + six_unlock_intent(&b->lock); + return -EIO; + } + + bch2_btree_set_root_initial(c, b, NULL); + six_unlock_intent(&b->lock); + + return 0; +} + +void bch2_btree_complete_write(struct bch_fs *c, struct btree *b, + struct btree_write *w) +{ + bch2_journal_pin_drop(&c->journal, &w->journal); + closure_wake_up(&w->wait); +} + +static void btree_node_write_done(struct bch_fs *c, struct btree *b) +{ + struct btree_write *w = btree_prev_write(b); + + /* + * Before calling bch2_btree_complete_write() - if the write errored, we + * have to halt new journal writes before they see this btree node + * write as completed: + */ + if (btree_node_write_error(b)) + bch2_journal_halt(&c->journal); + + bch2_btree_complete_write(c, b, w); + btree_node_io_unlock(b); +} + +static void btree_node_write_endio(struct bio *bio) +{ + struct btree *b = bio->bi_private; + struct bch_write_bio *wbio = to_wbio(bio); + struct bch_fs *c = wbio->c; + struct bio *orig = wbio->split ? wbio->orig : NULL; + struct closure *cl = !wbio->split ? wbio->cl : NULL; + struct bch_dev *ca = wbio->ca; + + if (bch2_dev_fatal_io_err_on(bio->bi_error, ca, "btree write") || + bch2_meta_write_fault("btree")) + set_btree_node_write_error(b); + + if (wbio->bounce) + btree_bounce_free(c, + wbio->order, + wbio->used_mempool, + page_address(bio->bi_io_vec[0].bv_page)); + + if (wbio->put_bio) + bio_put(bio); + + if (orig) { + bio_endio(orig); + } else { + btree_node_write_done(c, b); + if (cl) + closure_put(cl); + } + + if (ca) + percpu_ref_put(&ca->io_ref); +} + +void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, + struct closure *parent, + enum six_lock_type lock_type_held, + int idx_to_write) +{ + struct bio *bio; + struct bch_write_bio *wbio; + struct bset_tree *t; + struct bset *i; + struct btree_node *bn = NULL; + struct btree_node_entry *bne = NULL; + BKEY_PADDED(key) k; + struct bkey_s_extent e; + struct bch_extent_ptr *ptr; + struct sort_iter sort_iter; + struct nonce nonce; + unsigned bytes_to_write, sectors_to_write, order, bytes, u64s; + u64 seq = 0; + bool used_mempool; + unsigned long old, new; + void *data; + + /* + * We may only have a read lock on the btree node - the dirty bit is our + * "lock" against racing with other threads that may be trying to start + * a write, we do a write iff we clear the dirty bit. Since setting the + * dirty bit requires a write lock, we can't race with other threads + * redirtying it: + */ + do { + old = new = READ_ONCE(b->flags); + + if (!(old & (1 << BTREE_NODE_dirty))) + return; + + if (idx_to_write >= 0 && + idx_to_write != !!(old & (1 << BTREE_NODE_write_idx))) + return; + + if (old & (1 << BTREE_NODE_write_in_flight)) { + wait_on_bit_io(&b->flags, + BTREE_NODE_write_in_flight, + TASK_UNINTERRUPTIBLE); + continue; + } + + new &= ~(1 << BTREE_NODE_dirty); + new |= (1 << BTREE_NODE_write_in_flight); + new |= (1 << BTREE_NODE_just_written); + new ^= (1 << BTREE_NODE_write_idx); + } while (cmpxchg_acquire(&b->flags, old, new) != old); + + BUG_ON(!list_empty(&b->write_blocked)); + + BUG_ON(b->written >= c->sb.btree_node_size); + BUG_ON(bset_written(b, btree_bset_last(b))); + BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c)); + BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format))); + + if (lock_type_held == SIX_LOCK_intent) { + six_lock_write(&b->lock); + __bch2_compact_whiteouts(c, b, COMPACT_WRITTEN); + six_unlock_write(&b->lock); + } else { + __bch2_compact_whiteouts(c, b, COMPACT_WRITTEN_NO_WRITE_LOCK); + } + + BUG_ON(b->uncompacted_whiteout_u64s); + + sort_iter_init(&sort_iter, b); + + bytes = !b->written + ? sizeof(struct btree_node) + : sizeof(struct btree_node_entry); + + bytes += b->whiteout_u64s * sizeof(u64); + + for_each_bset(b, t) { + i = bset(b, t); + + if (bset_written(b, i)) + continue; + + bytes += le16_to_cpu(i->u64s) * sizeof(u64); + sort_iter_add(&sort_iter, + btree_bkey_first(b, t), + btree_bkey_last(b, t)); + seq = max(seq, le64_to_cpu(i->journal_seq)); + } + + order = get_order(bytes); + data = btree_bounce_alloc(c, order, &used_mempool); + + if (!b->written) { + bn = data; + *bn = *b->data; + i = &bn->keys; + } else { + bne = data; + bne->keys = b->data->keys; + i = &bne->keys; + } + + i->journal_seq = cpu_to_le64(seq); + i->u64s = 0; + + if (!btree_node_is_extents(b)) { + sort_iter_add(&sort_iter, + unwritten_whiteouts_start(c, b), + unwritten_whiteouts_end(c, b)); + SET_BSET_SEPARATE_WHITEOUTS(i, false); + } else { + memcpy_u64s(i->start, + unwritten_whiteouts_start(c, b), + b->whiteout_u64s); + i->u64s = cpu_to_le16(b->whiteout_u64s); + SET_BSET_SEPARATE_WHITEOUTS(i, true); + } + + b->whiteout_u64s = 0; + + u64s = btree_node_is_extents(b) + ? sort_extents(vstruct_last(i), &sort_iter, false) + : sort_keys(i->start, &sort_iter, false); + le16_add_cpu(&i->u64s, u64s); + + clear_needs_whiteout(i); + + if (b->written && !i->u64s) { + /* Nothing to write: */ + btree_bounce_free(c, order, used_mempool, data); + btree_node_write_done(c, b); + return; + } + + BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN); + BUG_ON(i->seq != b->data->keys.seq); + + i->version = cpu_to_le16(BCACHE_BSET_VERSION); + SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c)); + + nonce = btree_nonce(b, i, b->written << 9); + + if (bn) { + bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, + &bn->flags, + (void *) &b->data->keys - + (void *) &b->data->flags); + nonce = nonce_add(nonce, + round_up((void *) &b->data->keys - + (void *) &b->data->flags, + CHACHA20_BLOCK_SIZE)); + bset_encrypt(c, i, nonce); + + nonce = btree_nonce(b, i, b->written << 9); + bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn); + } else { + bset_encrypt(c, i, nonce); + + bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); + } + + bytes_to_write = vstruct_end(i) - data; + sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9; + + memset(data + bytes_to_write, 0, + (sectors_to_write << 9) - bytes_to_write); + + BUG_ON(b->written + sectors_to_write > c->sb.btree_node_size); + + trace_btree_write(b, bytes_to_write, sectors_to_write); + + /* + * We handle btree write errors by immediately halting the journal - + * after we've done that, we can't issue any subsequent btree writes + * because they might have pointers to new nodes that failed to write. + * + * Furthermore, there's no point in doing any more btree writes because + * with the journal stopped, we're never going to update the journal to + * reflect that those writes were done and the data flushed from the + * journal: + * + * Make sure to update b->written so bch2_btree_init_next() doesn't + * break: + */ + if (bch2_journal_error(&c->journal) || + c->opts.nochanges) { + set_btree_node_noevict(b); + b->written += sectors_to_write; + + btree_bounce_free(c, order, used_mempool, data); + btree_node_write_done(c, b); + return; + } + + bio = bio_alloc_bioset(GFP_NOIO, 1 << order, &c->bio_write); + + wbio = to_wbio(bio); + wbio->cl = parent; + wbio->bounce = true; + wbio->put_bio = true; + wbio->order = order; + wbio->used_mempool = used_mempool; + bio->bi_iter.bi_size = sectors_to_write << 9; + bio->bi_end_io = btree_node_write_endio; + bio->bi_private = b; + bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_META|WRITE_SYNC|REQ_FUA); + + if (parent) + closure_get(parent); + + bch2_bio_map(bio, data); + + /* + * If we're appending to a leaf node, we don't technically need FUA - + * this write just needs to be persisted before the next journal write, + * which will be marked FLUSH|FUA. + * + * Similarly if we're writing a new btree root - the pointer is going to + * be in the next journal entry. + * + * But if we're writing a new btree node (that isn't a root) or + * appending to a non leaf btree node, we need either FUA or a flush + * when we write the parent with the new pointer. FUA is cheaper than a + * flush, and writes appending to leaf nodes aren't blocking anything so + * just make all btree node writes FUA to keep things sane. + */ + + bkey_copy(&k.key, &b->key); + e = bkey_i_to_s_extent(&k.key); + + extent_for_each_ptr(e, ptr) + ptr->offset += b->written; + + extent_for_each_ptr(e, ptr) + atomic64_add(sectors_to_write, + &c->devs[ptr->dev]->btree_sectors_written); + + b->written += sectors_to_write; + + bch2_submit_wbio_replicas(wbio, c, &k.key); +} + +/* + * Work that must be done with write lock held: + */ +bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b) +{ + bool invalidated_iter = false; + struct btree_node_entry *bne; + struct bset_tree *t; + + if (!btree_node_just_written(b)) + return false; + + BUG_ON(b->whiteout_u64s); + BUG_ON(b->uncompacted_whiteout_u64s); + + clear_btree_node_just_written(b); + + /* + * Note: immediately after write, bset_unwritten()/bset_written() don't + * work - the amount of data we had to write after compaction might have + * been smaller than the offset of the last bset. + * + * However, we know that all bsets have been written here, as long as + * we're still holding the write lock: + */ + + /* + * XXX: decide if we really want to unconditionally sort down to a + * single bset: + */ + if (b->nsets > 1) { + btree_node_sort(c, b, NULL, 0, b->nsets, true); + invalidated_iter = true; + } else { + invalidated_iter = bch2_drop_whiteouts(b); + } + + for_each_bset(b, t) + set_needs_whiteout(bset(b, t)); + + bch2_btree_verify(c, b); + + /* + * If later we don't unconditionally sort down to a single bset, we have + * to ensure this is still true: + */ + BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b)); + + bne = want_new_bset(c, b); + if (bne) + bch2_bset_init_next(b, &bne->keys); + + bch2_btree_build_aux_trees(b); + + return invalidated_iter; +} + +/* + * Use this one if the node is intent locked: + */ +void bch2_btree_node_write(struct bch_fs *c, struct btree *b, + struct closure *parent, + enum six_lock_type lock_type_held, + int idx_to_write) +{ + BUG_ON(lock_type_held == SIX_LOCK_write); + + if (lock_type_held == SIX_LOCK_intent || + six_trylock_convert(&b->lock, SIX_LOCK_read, + SIX_LOCK_intent)) { + __bch2_btree_node_write(c, b, parent, SIX_LOCK_intent, idx_to_write); + + six_lock_write(&b->lock); + bch2_btree_post_write_cleanup(c, b); + six_unlock_write(&b->lock); + + if (lock_type_held == SIX_LOCK_read) + six_lock_downgrade(&b->lock); + } else { + __bch2_btree_node_write(c, b, parent, SIX_LOCK_read, idx_to_write); + } +} + +static void bch2_btree_node_write_dirty(struct bch_fs *c, struct btree *b, + struct closure *parent) +{ + six_lock_read(&b->lock); + BUG_ON(b->level); + + bch2_btree_node_write(c, b, parent, SIX_LOCK_read, -1); + six_unlock_read(&b->lock); +} + +/* + * Write all dirty btree nodes to disk, including roots + */ +void bch2_btree_flush(struct bch_fs *c) +{ + struct closure cl; + struct btree *b; + struct bucket_table *tbl; + struct rhash_head *pos; + bool dropped_lock; + unsigned i; + + closure_init_stack(&cl); + + rcu_read_lock(); + + do { + dropped_lock = false; + i = 0; +restart: + tbl = rht_dereference_rcu(c->btree_cache_table.tbl, + &c->btree_cache_table); + + for (; i < tbl->size; i++) + rht_for_each_entry_rcu(b, pos, tbl, i, hash) + /* + * XXX - locking for b->level, when called from + * bch2_journal_move() + */ + if (!b->level && btree_node_dirty(b)) { + rcu_read_unlock(); + bch2_btree_node_write_dirty(c, b, &cl); + dropped_lock = true; + rcu_read_lock(); + goto restart; + } + } while (dropped_lock); + + rcu_read_unlock(); + + closure_sync(&cl); +} + +/** + * bch_btree_node_flush_journal - flush any journal entries that contain keys + * from this node + * + * The bset's journal sequence number is used for preserving ordering of index + * updates across unclean shutdowns - it's used to ignore bsets newer than the + * most recent journal entry. + * + * But when rewriting btree nodes we compact all the bsets in a btree node - and + * if we compacted a bset that should be ignored with bsets we do need, that + * would be bad. So to avoid that, prior to making the new node visible ensure + * that the journal has been flushed so that all the bsets we compacted should + * be visible. + */ +void bch2_btree_node_flush_journal_entries(struct bch_fs *c, + struct btree *b, + struct closure *cl) +{ + int i = b->nsets; + + /* + * Journal sequence numbers in the different bsets will always be in + * ascending order, we only need to flush the highest - except that the + * most recent bset might not have a journal sequence number yet, so we + * need to loop: + */ + while (i--) { + u64 seq = le64_to_cpu(bset(b, &b->set[i])->journal_seq); + + if (seq) { + bch2_journal_flush_seq_async(&c->journal, seq, cl); + break; + } + } +} |