summaryrefslogtreecommitdiff
path: root/libbcachefs/disk_accounting.c
diff options
context:
space:
mode:
Diffstat (limited to 'libbcachefs/disk_accounting.c')
-rw-r--r--libbcachefs/disk_accounting.c742
1 files changed, 742 insertions, 0 deletions
diff --git a/libbcachefs/disk_accounting.c b/libbcachefs/disk_accounting.c
new file mode 100644
index 00000000..48d68db2
--- /dev/null
+++ b/libbcachefs/disk_accounting.c
@@ -0,0 +1,742 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "bcachefs.h"
+#include "bcachefs_ioctl.h"
+#include "btree_cache.h"
+#include "btree_update.h"
+#include "btree_write_buffer.h"
+#include "buckets.h"
+#include "compress.h"
+#include "disk_accounting.h"
+#include "error.h"
+#include "journal_io.h"
+#include "replicas.h"
+
+/*
+ * Notes on disk accounting:
+ *
+ * We have two parallel sets of counters to be concerned with, and both must be
+ * kept in sync.
+ *
+ * - Persistent/on disk accounting, stored in the accounting btree and updated
+ * via btree write buffer updates that treat new accounting keys as deltas to
+ * apply to existing values. But reading from a write buffer btree is
+ * expensive, so we also have
+ *
+ * - In memory accounting, where accounting is stored as an array of percpu
+ * counters, indexed by an eytzinger array of disk acounting keys/bpos (which
+ * are the same thing, excepting byte swabbing on big endian).
+ *
+ * Cheap to read, but non persistent.
+ *
+ * Disk accounting updates are generated by transactional triggers; these run as
+ * keys enter and leave the btree, and can compare old and new versions of keys;
+ * the output of these triggers are deltas to the various counters.
+ *
+ * Disk accounting updates are done as btree write buffer updates, where the
+ * counters in the disk accounting key are deltas that will be applied to the
+ * counter in the btree when the key is flushed by the write buffer (or journal
+ * replay).
+ *
+ * To do a disk accounting update:
+ * - initialize a disk_accounting_pos, to specify which counter is being update
+ * - initialize counter deltas, as an array of 1-3 s64s
+ * - call bch2_disk_accounting_mod()
+ *
+ * This queues up the accounting update to be done at transaction commit time.
+ * Underneath, it's a normal btree write buffer update.
+ *
+ * The transaction commit path is responsible for propagating updates to the in
+ * memory counters, with bch2_accounting_mem_mod().
+ *
+ * The commit path also assigns every disk accounting update a unique version
+ * number, based on the journal sequence number and offset within that journal
+ * buffer; this is used by journal replay to determine which updates have been
+ * done.
+ *
+ * The transaction commit path also ensures that replicas entry accounting
+ * updates are properly marked in the superblock (so that we know whether we can
+ * mount without data being unavailable); it will update the superblock if
+ * bch2_accounting_mem_mod() tells it to.
+ */
+
+static const char * const disk_accounting_type_strs[] = {
+#define x(t, n, ...) [n] = #t,
+ BCH_DISK_ACCOUNTING_TYPES()
+#undef x
+ NULL
+};
+
+static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos pos,
+ s64 *d, unsigned nr)
+{
+ struct bkey_i_accounting *acc = bkey_accounting_init(k);
+
+ acc->k.p = disk_accounting_pos_to_bpos(&pos);
+ set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr);
+
+ memcpy_u64s_small(acc->v.d, d, nr);
+}
+
+int bch2_disk_accounting_mod(struct btree_trans *trans,
+ struct disk_accounting_pos *k,
+ s64 *d, unsigned nr, bool gc)
+{
+ /* Normalize: */
+ switch (k->type) {
+ case BCH_DISK_ACCOUNTING_replicas:
+ bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp);
+ break;
+ }
+
+ BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS);
+
+ struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
+
+ accounting_key_init(&k_i.k, *k, d, nr);
+
+ return likely(!gc)
+ ? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k)
+ : bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true);
+}
+
+int bch2_mod_dev_cached_sectors(struct btree_trans *trans,
+ unsigned dev, s64 sectors,
+ bool gc)
+{
+ struct disk_accounting_pos acc = {
+ .type = BCH_DISK_ACCOUNTING_replicas,
+ };
+
+ bch2_replicas_entry_cached(&acc.replicas, dev);
+
+ return bch2_disk_accounting_mod(trans, &acc, &sectors, 1, gc);
+}
+
+int bch2_accounting_invalid(struct bch_fs *c, struct bkey_s_c k,
+ enum bch_validate_flags flags,
+ struct printbuf *err)
+{
+ return 0;
+}
+
+void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k)
+{
+ if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) {
+ prt_printf(out, "unknown type %u", k->type);
+ return;
+ }
+
+ prt_str(out, disk_accounting_type_strs[k->type]);
+ prt_str(out, " ");
+
+ switch (k->type) {
+ case BCH_DISK_ACCOUNTING_nr_inodes:
+ break;
+ case BCH_DISK_ACCOUNTING_persistent_reserved:
+ prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas);
+ break;
+ case BCH_DISK_ACCOUNTING_replicas:
+ bch2_replicas_entry_to_text(out, &k->replicas);
+ break;
+ case BCH_DISK_ACCOUNTING_dev_data_type:
+ prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev);
+ bch2_prt_data_type(out, k->dev_data_type.data_type);
+ break;
+ case BCH_DISK_ACCOUNTING_compression:
+ bch2_prt_compression_type(out, k->compression.type);
+ break;
+ case BCH_DISK_ACCOUNTING_snapshot:
+ prt_printf(out, "id=%u", k->snapshot.id);
+ break;
+ case BCH_DISK_ACCOUNTING_btree:
+ prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id));
+ break;
+ }
+}
+
+void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
+{
+ struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k);
+ struct disk_accounting_pos acc_k;
+ bpos_to_disk_accounting_pos(&acc_k, k.k->p);
+
+ bch2_accounting_key_to_text(out, &acc_k);
+
+ for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++)
+ prt_printf(out, " %lli", acc.v->d[i]);
+}
+
+void bch2_accounting_swab(struct bkey_s k)
+{
+ for (u64 *p = (u64 *) k.v;
+ p < (u64 *) bkey_val_end(k);
+ p++)
+ *p = swab64(*p);
+}
+
+static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p)
+{
+ struct disk_accounting_pos acc_k;
+ bpos_to_disk_accounting_pos(&acc_k, p);
+
+ switch (acc_k.type) {
+ case BCH_DISK_ACCOUNTING_replicas:
+ memcpy(r, &acc_k.replicas, replicas_entry_bytes(&acc_k.replicas));
+ return true;
+ default:
+ return false;
+ }
+}
+
+static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p)
+{
+ struct bch_replicas_padded r;
+ return accounting_to_replicas(&r.e, p)
+ ? bch2_mark_replicas(c, &r.e)
+ : 0;
+}
+
+/*
+ * Ensure accounting keys being updated are present in the superblock, when
+ * applicable (i.e. replicas updates)
+ */
+int bch2_accounting_update_sb(struct btree_trans *trans)
+{
+ for (struct jset_entry *i = trans->journal_entries;
+ i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s);
+ i = vstruct_next(i))
+ if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) {
+ int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int __bch2_accounting_mem_mod_slowpath(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc)
+{
+ struct bch_replicas_padded r;
+
+ if (accounting_to_replicas(&r.e, a.k->p) &&
+ !bch2_replicas_marked_locked(c, &r.e))
+ return -BCH_ERR_btree_insert_need_mark_replicas;
+
+ struct bch_accounting_mem *acc = &c->accounting[gc];
+ unsigned new_nr_counters = acc->nr_counters + bch2_accounting_counters(a.k);
+
+ u64 __percpu *new_counters = __alloc_percpu_gfp(new_nr_counters * sizeof(u64),
+ sizeof(u64), GFP_KERNEL);
+ if (!new_counters)
+ return -BCH_ERR_ENOMEM_disk_accounting;
+
+ preempt_disable();
+ memcpy(this_cpu_ptr(new_counters),
+ bch2_acc_percpu_u64s(acc->v, acc->nr_counters),
+ acc->nr_counters * sizeof(u64));
+ preempt_enable();
+
+ struct accounting_pos_offset n = {
+ .pos = a.k->p,
+ .version = a.k->version,
+ .offset = acc->nr_counters,
+ .nr_counters = bch2_accounting_counters(a.k),
+ };
+ if (darray_push(&acc->k, n)) {
+ free_percpu(new_counters);
+ return -BCH_ERR_ENOMEM_disk_accounting;
+ }
+
+ eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, NULL);
+
+ free_percpu(acc->v);
+ acc->v = new_counters;
+ acc->nr_counters = new_nr_counters;
+
+ for (unsigned i = 0; i < n.nr_counters; i++)
+ this_cpu_add(acc->v[n.offset + i], a.v->d[i]);
+ return 0;
+}
+
+int bch2_accounting_mem_mod_slowpath(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc)
+{
+ percpu_up_read(&c->mark_lock);
+ percpu_down_write(&c->mark_lock);
+ int ret = __bch2_accounting_mem_mod_slowpath(c, a, gc);
+ percpu_up_write(&c->mark_lock);
+ percpu_down_read(&c->mark_lock);
+ return ret;
+}
+
+/*
+ * Read out accounting keys for replicas entries, as an array of
+ * bch_replicas_usage entries.
+ *
+ * Note: this may be deprecated/removed at smoe point in the future and replaced
+ * with something more general, it exists to support the ioctl used by the
+ * 'bcachefs fs usage' command.
+ */
+int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage)
+{
+ struct bch_accounting_mem *acc = &c->accounting[0];
+ int ret = 0;
+
+ darray_init(usage);
+
+ percpu_down_read(&c->mark_lock);
+ darray_for_each(acc->k, i) {
+ struct {
+ struct bch_replicas_usage r;
+ u8 pad[BCH_BKEY_PTRS_MAX];
+ } u;
+
+ if (!accounting_to_replicas(&u.r.r, i->pos))
+ continue;
+
+ bch2_accounting_mem_read(c, i->pos, &u.r.sectors, 1);
+
+ ret = darray_make_room(usage, replicas_usage_bytes(&u.r));
+ if (ret)
+ break;
+
+ memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r));
+ usage->nr += replicas_usage_bytes(&u.r);
+ }
+ percpu_up_read(&c->mark_lock);
+
+ if (ret)
+ darray_exit(usage);
+ return ret;
+}
+
+int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask)
+{
+
+ struct bch_accounting_mem *acc = &c->accounting[0];
+ int ret = 0;
+
+ darray_init(out_buf);
+
+ percpu_down_read(&c->mark_lock);
+ darray_for_each(acc->k, i) {
+ struct disk_accounting_pos a_p;
+ bpos_to_disk_accounting_pos(&a_p, i->pos);
+
+ if (!(accounting_types_mask & BIT(a_p.type)))
+ continue;
+
+ ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) +
+ sizeof(u64) * i->nr_counters);
+ if (ret)
+ break;
+
+ struct bkey_i_accounting *a_out =
+ bkey_accounting_init((void *) &darray_top(*out_buf));
+ set_bkey_val_u64s(&a_out->k, i->nr_counters);
+ a_out->k.p = i->pos;
+ bch2_accounting_mem_read(c, i->pos, a_out->v.d, i->nr_counters);
+
+ if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out)))
+ out_buf->nr += bkey_bytes(&a_out->k);
+ }
+
+ percpu_up_read(&c->mark_lock);
+
+ if (ret)
+ darray_exit(out_buf);
+ return ret;
+}
+
+void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c)
+{
+ struct bch_accounting_mem *acc = &c->accounting[0];
+
+ percpu_down_read(&c->mark_lock);
+ out->atomic++;
+
+ eytzinger0_for_each(i, acc->k.nr) {
+ struct disk_accounting_pos acc_k;
+ bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos);
+
+ bch2_accounting_key_to_text(out, &acc_k);
+
+ u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
+ bch2_accounting_mem_read_counters(c, i, v, ARRAY_SIZE(v), false);
+
+ prt_str(out, ":");
+ for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++)
+ prt_printf(out, " %llu", v[j]);
+ prt_newline(out);
+ }
+
+ --out->atomic;
+ percpu_up_read(&c->mark_lock);
+}
+
+/* Ensures all counters in @src exist in @dst: */
+static int copy_counters(struct bch_accounting_mem *dst,
+ struct bch_accounting_mem *src)
+{
+ unsigned orig_dst_k_nr = dst->k.nr;
+ unsigned dst_counters = dst->nr_counters;
+
+ darray_for_each(src->k, i)
+ if (eytzinger0_find(dst->k.data, orig_dst_k_nr, sizeof(dst->k.data[0]),
+ accounting_pos_cmp, &i->pos) >= orig_dst_k_nr) {
+ if (darray_push(&dst->k, ((struct accounting_pos_offset) {
+ .pos = i->pos,
+ .offset = dst_counters,
+ .nr_counters = i->nr_counters })))
+ goto err;
+
+ dst_counters += i->nr_counters;
+ }
+
+ if (dst->k.nr == orig_dst_k_nr)
+ return 0;
+
+ u64 __percpu *new_counters = __alloc_percpu_gfp(dst_counters * sizeof(u64),
+ sizeof(u64), GFP_KERNEL);
+ if (!new_counters)
+ goto err;
+
+ preempt_disable();
+ memcpy(this_cpu_ptr(new_counters),
+ bch2_acc_percpu_u64s(dst->v, dst->nr_counters),
+ dst->nr_counters * sizeof(u64));
+ preempt_enable();
+
+ free_percpu(dst->v);
+ dst->v = new_counters;
+ dst->nr_counters = dst_counters;
+
+ eytzinger0_sort(dst->k.data, dst->k.nr, sizeof(dst->k.data[0]), accounting_pos_cmp, NULL);
+
+ return 0;
+err:
+ dst->k.nr = orig_dst_k_nr;
+ return -BCH_ERR_ENOMEM_disk_accounting;
+}
+
+int bch2_accounting_gc_done(struct bch_fs *c)
+{
+ struct bch_accounting_mem *dst = &c->accounting[0];
+ struct bch_accounting_mem *src = &c->accounting[1];
+ struct btree_trans *trans = bch2_trans_get(c);
+ struct printbuf buf = PRINTBUF;
+ int ret = 0;
+
+ percpu_down_write(&c->mark_lock);
+
+ ret = copy_counters(dst, src) ?:
+ copy_counters(src, dst);
+ if (ret)
+ goto err;
+
+ BUG_ON(dst->k.nr != src->k.nr);
+
+ for (unsigned i = 0; i < src->k.nr; i++) {
+ BUG_ON(src->k.data[i].nr_counters != dst->k.data[i].nr_counters);
+ BUG_ON(!bpos_eq(dst->k.data[i].pos, src->k.data[i].pos));
+
+ struct disk_accounting_pos acc_k;
+ bpos_to_disk_accounting_pos(&acc_k, src->k.data[i].pos);
+
+ unsigned nr = src->k.data[i].nr_counters;
+ u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS];
+ u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS];
+
+ bch2_accounting_mem_read_counters(c, i, dst_v, nr, false);
+ bch2_accounting_mem_read_counters(c, i, src_v, nr, true);
+
+ if (memcmp(dst_v, src_v, nr * sizeof(u64))) {
+ printbuf_reset(&buf);
+ prt_str(&buf, "accounting mismatch for ");
+ bch2_accounting_key_to_text(&buf, &acc_k);
+
+ prt_str(&buf, ": got");
+ for (unsigned j = 0; j < nr; j++)
+ prt_printf(&buf, " %llu", dst_v[j]);
+
+ prt_str(&buf, " should be");
+ for (unsigned j = 0; j < nr; j++)
+ prt_printf(&buf, " %llu", src_v[j]);
+
+ for (unsigned j = 0; j < nr; j++)
+ src_v[j] -= dst_v[j];
+
+ if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) {
+ ret = commit_do(trans, NULL, NULL, 0,
+ bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false));
+ if (ret)
+ goto err;
+
+ if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
+ memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta));
+ struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
+
+ accounting_key_init(&k_i.k, acc_k, src_v, nr);
+ bch2_accounting_mem_mod_locked(trans, bkey_i_to_s_c_accounting(&k_i.k), false);
+
+ preempt_disable();
+ struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage);
+ struct bch_fs_usage_base *src = &trans->fs_usage_delta;
+ acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64));
+ preempt_enable();
+ }
+ }
+ }
+ }
+err:
+fsck_err:
+ percpu_up_write(&c->mark_lock);
+ printbuf_exit(&buf);
+ bch2_trans_put(trans);
+ bch_err_fn(c, ret);
+ return ret;
+}
+
+static int accounting_read_key(struct bch_fs *c, struct btree_trans *trans, struct bkey_s_c k)
+{
+ struct printbuf buf = PRINTBUF;
+
+ if (k.k->type != KEY_TYPE_accounting)
+ return 0;
+
+ percpu_down_read(&c->mark_lock);
+ int ret = __bch2_accounting_mem_mod(c, bkey_s_c_to_accounting(k), false);
+ percpu_up_read(&c->mark_lock);
+
+ if (bch2_accounting_key_is_zero(bkey_s_c_to_accounting(k)) &&
+ ret == -BCH_ERR_btree_insert_need_mark_replicas)
+ ret = 0;
+
+ struct disk_accounting_pos acc;
+ bpos_to_disk_accounting_pos(&acc, k.k->p);
+
+ if (fsck_err_on(ret == -BCH_ERR_btree_insert_need_mark_replicas,
+ trans, accounting_replicas_not_marked,
+ "accounting not marked in superblock replicas\n %s",
+ (bch2_accounting_key_to_text(&buf, &acc),
+ buf.buf)))
+ ret = bch2_accounting_update_sb_one(c, k.k->p);
+fsck_err:
+ printbuf_exit(&buf);
+ return ret;
+}
+
+/*
+ * At startup time, initialize the in memory accounting from the btree (and
+ * journal)
+ */
+int bch2_accounting_read(struct bch_fs *c)
+{
+ struct bch_accounting_mem *acc = &c->accounting[0];
+
+ int ret = bch2_trans_run(c,
+ for_each_btree_key(trans, iter,
+ BTREE_ID_accounting, POS_MIN,
+ BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({
+ struct bkey u;
+ struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u);
+ accounting_read_key(c, trans, k);
+ })));
+ if (ret)
+ goto err;
+
+ struct journal_keys *keys = &c->journal_keys;
+ move_gap(keys, keys->nr);
+ darray_for_each(*keys, i) {
+ if (i->k->k.type == KEY_TYPE_accounting) {
+ struct bkey_s_c k = bkey_i_to_s_c(i->k);
+ unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr,
+ sizeof(acc->k.data[0]),
+ accounting_pos_cmp, &k.k->p);
+
+ bool applied = idx < acc->k.nr &&
+ bversion_cmp(acc->k.data[idx].version, k.k->version) >= 0;
+
+ if (applied)
+ continue;
+
+ ret = accounting_read_key(c, NULL, k);
+ if (ret)
+ goto err;
+ }
+ }
+
+ percpu_down_read(&c->mark_lock);
+ preempt_disable();
+ struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage);
+
+ for (unsigned i = 0; i < acc->k.nr; i++) {
+ struct disk_accounting_pos k;
+ bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos);
+
+ u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
+ bch2_accounting_mem_read_counters(c, i, v, ARRAY_SIZE(v), false);
+
+ switch (k.type) {
+ case BCH_DISK_ACCOUNTING_persistent_reserved:
+ usage->reserved += v[0] * k.persistent_reserved.nr_replicas;
+ break;
+ case BCH_DISK_ACCOUNTING_replicas:
+ fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]);
+ break;
+ case BCH_DISK_ACCOUNTING_dev_data_type:
+ rcu_read_lock();
+ struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev);
+ if (ca) {
+ struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type];
+ percpu_u64_set(&d->buckets, v[0]);
+ percpu_u64_set(&d->sectors, v[1]);
+ percpu_u64_set(&d->fragmented, v[2]);
+
+ if (k.dev_data_type.data_type == BCH_DATA_sb ||
+ k.dev_data_type.data_type == BCH_DATA_journal)
+ usage->hidden += v[0] * ca->mi.bucket_size;
+ }
+ rcu_read_unlock();
+ break;
+ }
+ }
+ preempt_enable();
+ percpu_up_read(&c->mark_lock);
+err:
+ bch_err_fn(c, ret);
+ return ret;
+}
+
+int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev)
+{
+ return bch2_trans_run(c,
+ bch2_btree_write_buffer_flush_sync(trans) ?:
+ for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN,
+ BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({
+ struct disk_accounting_pos acc;
+ bpos_to_disk_accounting_pos(&acc, k.k->p);
+
+ acc.type == BCH_DISK_ACCOUNTING_dev_data_type &&
+ acc.dev_data_type.dev == dev
+ ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0)
+ : 0;
+ })) ?:
+ bch2_btree_write_buffer_flush_sync(trans));
+}
+
+int bch2_dev_usage_init(struct bch_dev *ca, bool gc)
+{
+ struct bch_fs *c = ca->fs;
+ struct disk_accounting_pos acc = {
+ .type = BCH_DISK_ACCOUNTING_dev_data_type,
+ .dev_data_type.dev = ca->dev_idx,
+ .dev_data_type.data_type = BCH_DATA_free,
+ };
+ u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 };
+
+ int ret = bch2_trans_do(c, NULL, NULL, 0,
+ bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc));
+ bch_err_fn(c, ret);
+ return ret;
+}
+
+void bch2_verify_accounting_clean(struct bch_fs *c)
+{
+ bool mismatch = false;
+ struct bch_fs_usage_base base = {}, base_inmem = {};
+
+ bch2_trans_run(c,
+ for_each_btree_key(trans, iter,
+ BTREE_ID_accounting, POS_MIN,
+ BTREE_ITER_all_snapshots, k, ({
+ u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
+ struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k);
+ unsigned nr = bch2_accounting_counters(k.k);
+
+ bch2_accounting_mem_read(c, k.k->p, v, nr);
+
+ if (memcmp(a.v->d, v, nr * sizeof(u64))) {
+ struct printbuf buf = PRINTBUF;
+
+ bch2_bkey_val_to_text(&buf, c, k);
+ prt_str(&buf, " !=");
+ for (unsigned j = 0; j < nr; j++)
+ prt_printf(&buf, " %llu", v[j]);
+
+ pr_err("%s", buf.buf);
+ printbuf_exit(&buf);
+ mismatch = true;
+ }
+
+ struct disk_accounting_pos acc_k;
+ bpos_to_disk_accounting_pos(&acc_k, a.k->p);
+
+ switch (acc_k.type) {
+ case BCH_DISK_ACCOUNTING_persistent_reserved:
+ base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0];
+ break;
+ case BCH_DISK_ACCOUNTING_replicas:
+ fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]);
+ break;
+ case BCH_DISK_ACCOUNTING_dev_data_type: {
+ rcu_read_lock();
+ struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev);
+ if (!ca) {
+ rcu_read_unlock();
+ continue;
+ }
+
+ v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets);
+ v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors);
+ v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented);
+ rcu_read_unlock();
+
+ if (memcmp(a.v->d, v, 3 * sizeof(u64))) {
+ struct printbuf buf = PRINTBUF;
+
+ bch2_bkey_val_to_text(&buf, c, k);
+ prt_str(&buf, " in mem");
+ for (unsigned j = 0; j < nr; j++)
+ prt_printf(&buf, " %llu", v[j]);
+
+ pr_err("dev accounting mismatch: %s", buf.buf);
+ printbuf_exit(&buf);
+ mismatch = true;
+ }
+ }
+ }
+
+ 0;
+ })));
+
+ acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64));
+
+#define check(x) \
+ if (base.x != base_inmem.x) { \
+ pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \
+ mismatch = true; \
+ }
+
+ //check(hidden);
+ check(btree);
+ check(data);
+ check(cached);
+ check(reserved);
+ check(nr_inodes);
+
+ WARN_ON(mismatch);
+}
+
+void bch2_accounting_free(struct bch_accounting_mem *acc)
+{
+ darray_exit(&acc->k);
+ free_percpu(acc->v);
+ acc->v = NULL;
+ acc->nr_counters = 0;
+}
+
+void bch2_fs_accounting_exit(struct bch_fs *c)
+{
+ bch2_accounting_free(&c->accounting[0]);
+}