summaryrefslogtreecommitdiff
path: root/libbcache/alloc.c
blob: 2392c68841661dd4e69fae0bf9c48856d329f363 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
/*
 * Primary bucket allocation code
 *
 * Copyright 2012 Google, Inc.
 *
 * Allocation in bcache is done in terms of buckets:
 *
 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
 * btree pointers - they must match for the pointer to be considered valid.
 *
 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
 * bucket simply by incrementing its gen.
 *
 * The gens (along with the priorities; it's really the gens are important but
 * the code is named as if it's the priorities) are written in an arbitrary list
 * of buckets on disk, with a pointer to them in the journal header.
 *
 * When we invalidate a bucket, we have to write its new gen to disk and wait
 * for that write to complete before we use it - otherwise after a crash we
 * could have pointers that appeared to be good but pointed to data that had
 * been overwritten.
 *
 * Since the gens and priorities are all stored contiguously on disk, we can
 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
 * call prio_write(), and when prio_write() finishes we pull buckets off the
 * free_inc list and optionally discard them.
 *
 * free_inc isn't the only freelist - if it was, we'd often have to sleep while
 * priorities and gens were being written before we could allocate. c->free is a
 * smaller freelist, and buckets on that list are always ready to be used.
 *
 * If we've got discards enabled, that happens when a bucket moves from the
 * free_inc list to the free list.
 *
 * It's important to ensure that gens don't wrap around - with respect to
 * either the oldest gen in the btree or the gen on disk. This is quite
 * difficult to do in practice, but we explicitly guard against it anyways - if
 * a bucket is in danger of wrapping around we simply skip invalidating it that
 * time around, and we garbage collect or rewrite the priorities sooner than we
 * would have otherwise.
 *
 * bch_bucket_alloc() allocates a single bucket from a specific device.
 *
 * bch_bucket_alloc_set() allocates one or more buckets from different devices
 * in a given filesystem.
 *
 * invalidate_buckets() drives all the processes described above. It's called
 * from bch_bucket_alloc() and a few other places that need to make sure free
 * buckets are ready.
 *
 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
 * invalidated, and then invalidate them and stick them on the free_inc list -
 * in either lru or fifo order.
 */

#include "bcache.h"
#include "alloc.h"
#include "btree_update.h"
#include "buckets.h"
#include "checksum.h"
#include "clock.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal.h"
#include "super-io.h"

#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/random.h>
#include <linux/rcupdate.h>
#include <trace/events/bcache.h>

static void __bch_bucket_free(struct bch_dev *, struct bucket *);
static void bch_recalc_min_prio(struct bch_dev *, int);

/* Allocation groups: */

void bch_dev_group_remove(struct dev_group *grp, struct bch_dev *ca)
{
	unsigned i;

	spin_lock(&grp->lock);

	for (i = 0; i < grp->nr; i++)
		if (grp->d[i].dev == ca) {
			grp->nr--;
			memmove(&grp->d[i],
				&grp->d[i + 1],
				(grp->nr- i) * sizeof(grp->d[0]));
			break;
		}

	spin_unlock(&grp->lock);
}

void bch_dev_group_add(struct dev_group *grp, struct bch_dev *ca)
{
	unsigned i;

	spin_lock(&grp->lock);
	for (i = 0; i < grp->nr; i++)
		if (grp->d[i].dev == ca)
			goto out;

	BUG_ON(grp->nr>= BCH_SB_MEMBERS_MAX);

	grp->d[grp->nr++].dev = ca;
out:
	spin_unlock(&grp->lock);
}

/* Ratelimiting/PD controllers */

static void pd_controllers_update(struct work_struct *work)
{
	struct bch_fs *c = container_of(to_delayed_work(work),
					   struct bch_fs,
					   pd_controllers_update);
	struct bch_dev *ca;
	unsigned i, iter;

	/* All units are in bytes */
	u64 faster_tiers_size	= 0;
	u64 faster_tiers_dirty	= 0;

	u64 fastest_tier_size	= 0;
	u64 fastest_tier_free	= 0;
	u64 copygc_can_free	= 0;

	rcu_read_lock();
	for (i = 0; i < ARRAY_SIZE(c->tiers); i++) {
		bch_pd_controller_update(&c->tiers[i].pd,
				div_u64(faster_tiers_size *
					c->tiering_percent, 100),
				faster_tiers_dirty,
				-1);

		spin_lock(&c->tiers[i].devs.lock);
		group_for_each_dev(ca, &c->tiers[i].devs, iter) {
			struct bch_dev_usage stats = bch_dev_usage_read(ca);
			unsigned bucket_bits = ca->bucket_bits + 9;

			u64 size = (ca->mi.nbuckets -
				    ca->mi.first_bucket) << bucket_bits;
			u64 dirty = stats.buckets_dirty << bucket_bits;
			u64 free = __dev_buckets_free(ca, stats) << bucket_bits;
			/*
			 * Bytes of internal fragmentation, which can be
			 * reclaimed by copy GC
			 */
			s64 fragmented = ((stats.buckets_dirty +
					   stats.buckets_cached) <<
					  bucket_bits) -
				((stats.sectors_dirty +
				  stats.sectors_cached) << 9);

			if (fragmented < 0)
				fragmented = 0;

			bch_pd_controller_update(&ca->moving_gc_pd,
						 free, fragmented, -1);

			faster_tiers_size		+= size;
			faster_tiers_dirty		+= dirty;

			if (!c->fastest_tier ||
			    c->fastest_tier == &c->tiers[i]) {
				fastest_tier_size	+= size;
				fastest_tier_free	+= free;
			}

			copygc_can_free			+= fragmented;
		}
		spin_unlock(&c->tiers[i].devs.lock);
	}

	rcu_read_unlock();

	/*
	 * Throttle foreground writes if tier 0 is running out of free buckets,
	 * and either tiering or copygc can free up space.
	 *
	 * Target will be small if there isn't any work to do - we don't want to
	 * throttle foreground writes if we currently have all the free space
	 * we're ever going to have.
	 *
	 * Otherwise, if there's work to do, try to keep 20% of tier0 available
	 * for foreground writes.
	 */
	if (c->fastest_tier)
		copygc_can_free = U64_MAX;

	bch_pd_controller_update(&c->foreground_write_pd,
				 min(copygc_can_free,
				     div_u64(fastest_tier_size *
					     c->foreground_target_percent,
					     100)),
				 fastest_tier_free,
				 -1);

	schedule_delayed_work(&c->pd_controllers_update,
			      c->pd_controllers_update_seconds * HZ);
}

/*
 * Bucket priorities/gens:
 *
 * For each bucket, we store on disk its
   * 8 bit gen
   * 16 bit priority
 *
 * See alloc.c for an explanation of the gen. The priority is used to implement
 * lru (and in the future other) cache replacement policies; for most purposes
 * it's just an opaque integer.
 *
 * The gens and the priorities don't have a whole lot to do with each other, and
 * it's actually the gens that must be written out at specific times - it's no
 * big deal if the priorities don't get written, if we lose them we just reuse
 * buckets in suboptimal order.
 *
 * On disk they're stored in a packed array, and in as many buckets are required
 * to fit them all. The buckets we use to store them form a list; the journal
 * header points to the first bucket, the first bucket points to the second
 * bucket, et cetera.
 *
 * This code is used by the allocation code; periodically (whenever it runs out
 * of buckets to allocate from) the allocation code will invalidate some
 * buckets, but it can't use those buckets until their new gens are safely on
 * disk.
 */

static int prio_io(struct bch_dev *ca, uint64_t bucket, int op)
{
	bio_init(ca->bio_prio);
	bio_set_op_attrs(ca->bio_prio, op, REQ_SYNC|REQ_META);

	ca->bio_prio->bi_max_vecs	= bucket_pages(ca);
	ca->bio_prio->bi_io_vec		= ca->bio_prio->bi_inline_vecs;
	ca->bio_prio->bi_iter.bi_sector	= bucket * ca->mi.bucket_size;
	ca->bio_prio->bi_bdev		= ca->disk_sb.bdev;
	ca->bio_prio->bi_iter.bi_size	= bucket_bytes(ca);
	bch_bio_map(ca->bio_prio, ca->disk_buckets);

	return submit_bio_wait(ca->bio_prio);
}

static struct nonce prio_nonce(struct prio_set *p)
{
	return (struct nonce) {{
		[0] = 0,
		[1] = p->nonce[0],
		[2] = p->nonce[1],
		[3] = p->nonce[2]^BCH_NONCE_PRIO,
	}};
}

static int bch_prio_write(struct bch_dev *ca)
{
	struct bch_fs *c = ca->fs;
	struct journal *j = &c->journal;
	struct journal_res res = { 0 };
	bool need_new_journal_entry;
	int i, ret;

	if (c->opts.nochanges)
		return 0;

	trace_bcache_prio_write_start(ca);

	atomic64_add(ca->mi.bucket_size * prio_buckets(ca),
		     &ca->meta_sectors_written);

	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
		struct bucket *g;
		struct prio_set *p = ca->disk_buckets;
		struct bucket_disk *d = p->data;
		struct bucket_disk *end = d + prios_per_bucket(ca);
		size_t r;

		for (r = i * prios_per_bucket(ca);
		     r < ca->mi.nbuckets && d < end;
		     r++, d++) {
			g = ca->buckets + r;
			d->read_prio = cpu_to_le16(g->read_prio);
			d->write_prio = cpu_to_le16(g->write_prio);
			d->gen = ca->buckets[r].mark.gen;
		}

		p->next_bucket	= cpu_to_le64(ca->prio_buckets[i + 1]);
		p->magic	= cpu_to_le64(pset_magic(c));
		get_random_bytes(&p->nonce, sizeof(p->nonce));

		spin_lock(&ca->prio_buckets_lock);
		r = bch_bucket_alloc(ca, RESERVE_PRIO);
		BUG_ON(!r);

		/*
		 * goes here before dropping prio_buckets_lock to guard against
		 * it getting gc'd from under us
		 */
		ca->prio_buckets[i] = r;
		bch_mark_metadata_bucket(ca, ca->buckets + r,
					 BUCKET_PRIOS, false);
		spin_unlock(&ca->prio_buckets_lock);

		SET_PSET_CSUM_TYPE(p, bch_meta_checksum_type(c));

		bch_encrypt(c, PSET_CSUM_TYPE(p),
			    prio_nonce(p),
			    p->encrypted_start,
			    bucket_bytes(ca) -
			    offsetof(struct prio_set, encrypted_start));

		p->csum	 = bch_checksum(c, PSET_CSUM_TYPE(p),
					prio_nonce(p),
					(void *) p + sizeof(p->csum),
					bucket_bytes(ca) - sizeof(p->csum));

		ret = prio_io(ca, r, REQ_OP_WRITE);
		if (bch_dev_fatal_io_err_on(ret, ca,
					  "prio write to bucket %zu", r) ||
		    bch_meta_write_fault("prio"))
			return ret;
	}

	spin_lock(&j->lock);
	j->prio_buckets[ca->dev_idx] = cpu_to_le64(ca->prio_buckets[0]);
	j->nr_prio_buckets = max_t(unsigned,
				   ca->dev_idx + 1,
				   j->nr_prio_buckets);
	spin_unlock(&j->lock);

	do {
		unsigned u64s = jset_u64s(0);

		if (!test_bit(JOURNAL_STARTED, &c->journal.flags))
			break;

		ret = bch_journal_res_get(j, &res, u64s, u64s);
		if (ret)
			return ret;

		need_new_journal_entry = j->buf[res.idx].nr_prio_buckets <
			ca->dev_idx + 1;
		bch_journal_res_put(j, &res);

		ret = bch_journal_flush_seq(j, res.seq);
		if (ret)
			return ret;
	} while (need_new_journal_entry);

	/*
	 * Don't want the old priorities to get garbage collected until after we
	 * finish writing the new ones, and they're journalled
	 */

	spin_lock(&ca->prio_buckets_lock);

	for (i = 0; i < prio_buckets(ca); i++) {
		if (ca->prio_last_buckets[i])
			__bch_bucket_free(ca,
				&ca->buckets[ca->prio_last_buckets[i]]);

		ca->prio_last_buckets[i] = ca->prio_buckets[i];
	}

	spin_unlock(&ca->prio_buckets_lock);

	trace_bcache_prio_write_end(ca);
	return 0;
}

int bch_prio_read(struct bch_dev *ca)
{
	struct bch_fs *c = ca->fs;
	struct prio_set *p = ca->disk_buckets;
	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
	struct bucket_mark new;
	struct bch_csum csum;
	unsigned bucket_nr = 0;
	u64 bucket, expect, got;
	size_t b;
	int ret = 0;

	spin_lock(&c->journal.lock);
	bucket = le64_to_cpu(c->journal.prio_buckets[ca->dev_idx]);
	spin_unlock(&c->journal.lock);

	/*
	 * If the device hasn't been used yet, there won't be a prio bucket ptr
	 */
	if (!bucket)
		return 0;

	unfixable_fsck_err_on(bucket < ca->mi.first_bucket ||
			      bucket >= ca->mi.nbuckets, c,
			      "bad prio bucket %llu", bucket);

	for (b = 0; b < ca->mi.nbuckets; b++, d++) {
		if (d == end) {
			ca->prio_last_buckets[bucket_nr] = bucket;
			bucket_nr++;

			ret = prio_io(ca, bucket, REQ_OP_READ);
			if (bch_dev_fatal_io_err_on(ret, ca,
					"prior read from bucket %llu",
					bucket) ||
			    bch_meta_read_fault("prio"))
				return -EIO;

			got = le64_to_cpu(p->magic);
			expect = pset_magic(c);
			unfixable_fsck_err_on(got != expect, c,
				"bad magic (got %llu expect %llu) while reading prios from bucket %llu",
				got, expect, bucket);

			unfixable_fsck_err_on(PSET_CSUM_TYPE(p) >= BCH_CSUM_NR, c,
				"prio bucket with unknown csum type %llu bucket %lluu",
				PSET_CSUM_TYPE(p), bucket);

			csum = bch_checksum(c, PSET_CSUM_TYPE(p),
					    prio_nonce(p),
					    (void *) p + sizeof(p->csum),
					    bucket_bytes(ca) - sizeof(p->csum));
			unfixable_fsck_err_on(bch_crc_cmp(csum, p->csum), c,
				"bad checksum reading prios from bucket %llu",
				bucket);

			bch_encrypt(c, PSET_CSUM_TYPE(p),
				    prio_nonce(p),
				    p->encrypted_start,
				    bucket_bytes(ca) -
				    offsetof(struct prio_set, encrypted_start));

			bucket = le64_to_cpu(p->next_bucket);
			d = p->data;
		}

		ca->buckets[b].read_prio = le16_to_cpu(d->read_prio);
		ca->buckets[b].write_prio = le16_to_cpu(d->write_prio);

		bucket_cmpxchg(&ca->buckets[b], new, new.gen = d->gen);
	}

	mutex_lock(&c->bucket_lock);
	bch_recalc_min_prio(ca, READ);
	bch_recalc_min_prio(ca, WRITE);
	mutex_unlock(&c->bucket_lock);

	ret = 0;
fsck_err:
	return ret;
}

#define BUCKET_GC_GEN_MAX	96U

/**
 * wait_buckets_available - wait on reclaimable buckets
 *
 * If there aren't enough available buckets to fill up free_inc, wait until
 * there are.
 */
static int wait_buckets_available(struct bch_dev *ca)
{
	struct bch_fs *c = ca->fs;
	int ret = 0;

	while (1) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (kthread_should_stop()) {
			ret = -1;
			break;
		}

		if (ca->inc_gen_needs_gc >= fifo_free(&ca->free_inc)) {
			if (c->gc_thread) {
				trace_bcache_gc_cannot_inc_gens(ca->fs);
				atomic_inc(&c->kick_gc);
				wake_up_process(ca->fs->gc_thread);
			}

			/*
			 * We are going to wait for GC to wake us up, even if
			 * bucket counters tell us enough buckets are available,
			 * because we are actually waiting for GC to rewrite
			 * nodes with stale pointers
			 */
		} else if (dev_buckets_available(ca) >=
			   fifo_free(&ca->free_inc))
			break;

		up_read(&ca->fs->gc_lock);
		schedule();
		try_to_freeze();
		down_read(&ca->fs->gc_lock);
	}

	__set_current_state(TASK_RUNNING);
	return ret;
}

static void verify_not_on_freelist(struct bch_dev *ca, size_t bucket)
{
	if (expensive_debug_checks(ca->fs)) {
		size_t iter;
		long i;
		unsigned j;

		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
			BUG_ON(ca->prio_buckets[iter] == bucket);

		for (j = 0; j < RESERVE_NR; j++)
			fifo_for_each_entry(i, &ca->free[j], iter)
				BUG_ON(i == bucket);
		fifo_for_each_entry(i, &ca->free_inc, iter)
			BUG_ON(i == bucket);
	}
}

/* Bucket heap / gen */

void bch_recalc_min_prio(struct bch_dev *ca, int rw)
{
	struct bch_fs *c = ca->fs;
	struct prio_clock *clock = &c->prio_clock[rw];
	struct bucket *g;
	u16 max_delta = 1;
	unsigned i;

	lockdep_assert_held(&c->bucket_lock);

	/* Determine min prio for this particular cache */
	for_each_bucket(g, ca)
		max_delta = max(max_delta, (u16) (clock->hand - g->prio[rw]));

	ca->min_prio[rw] = clock->hand - max_delta;

	/*
	 * This may possibly increase the min prio for the whole cache, check
	 * that as well.
	 */
	max_delta = 1;

	for_each_member_device(ca, c, i)
		max_delta = max(max_delta,
				(u16) (clock->hand - ca->min_prio[rw]));

	clock->min_prio = clock->hand - max_delta;
}

static void bch_rescale_prios(struct bch_fs *c, int rw)
{
	struct prio_clock *clock = &c->prio_clock[rw];
	struct bch_dev *ca;
	struct bucket *g;
	unsigned i;

	trace_bcache_rescale_prios(c);

	for_each_member_device(ca, c, i) {
		for_each_bucket(g, ca)
			g->prio[rw] = clock->hand -
				(clock->hand - g->prio[rw]) / 2;

		bch_recalc_min_prio(ca, rw);
	}
}

static void bch_inc_clock_hand(struct io_timer *timer)
{
	struct prio_clock *clock = container_of(timer,
					struct prio_clock, rescale);
	struct bch_fs *c = container_of(clock,
				struct bch_fs, prio_clock[clock->rw]);
	u64 capacity;

	mutex_lock(&c->bucket_lock);

	clock->hand++;

	/* if clock cannot be advanced more, rescale prio */
	if (clock->hand == (u16) (clock->min_prio - 1))
		bch_rescale_prios(c, clock->rw);

	mutex_unlock(&c->bucket_lock);

	capacity = READ_ONCE(c->capacity);

	if (!capacity)
		return;

	/*
	 * we only increment when 0.1% of the filesystem capacity has been read
	 * or written too, this determines if it's time
	 *
	 * XXX: we shouldn't really be going off of the capacity of devices in
	 * RW mode (that will be 0 when we're RO, yet we can still service
	 * reads)
	 */
	timer->expire += capacity >> 10;

	bch_io_timer_add(&c->io_clock[clock->rw], timer);
}

static void bch_prio_timer_init(struct bch_fs *c, int rw)
{
	struct prio_clock *clock = &c->prio_clock[rw];
	struct io_timer *timer = &clock->rescale;

	clock->rw	= rw;
	timer->fn	= bch_inc_clock_hand;
	timer->expire	= c->capacity >> 10;
}

/*
 * Background allocation thread: scans for buckets to be invalidated,
 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
 * then optionally issues discard commands to the newly free buckets, then puts
 * them on the various freelists.
 */

static inline bool can_inc_bucket_gen(struct bch_dev *ca, struct bucket *g)
{
	return bucket_gc_gen(ca, g) < BUCKET_GC_GEN_MAX;
}

static bool bch_can_invalidate_bucket(struct bch_dev *ca, struct bucket *g)
{
	if (!is_available_bucket(READ_ONCE(g->mark)))
		return false;

	if (bucket_gc_gen(ca, g) >= BUCKET_GC_GEN_MAX - 1)
		ca->inc_gen_needs_gc++;

	return can_inc_bucket_gen(ca, g);
}

static void bch_invalidate_one_bucket(struct bch_dev *ca, struct bucket *g)
{
	spin_lock(&ca->freelist_lock);

	bch_invalidate_bucket(ca, g);

	g->read_prio = ca->fs->prio_clock[READ].hand;
	g->write_prio = ca->fs->prio_clock[WRITE].hand;

	verify_not_on_freelist(ca, g - ca->buckets);
	BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets));

	spin_unlock(&ca->freelist_lock);
}

/*
 * Determines what order we're going to reuse buckets, smallest bucket_key()
 * first.
 *
 *
 * - We take into account the read prio of the bucket, which gives us an
 *   indication of how hot the data is -- we scale the prio so that the prio
 *   farthest from the clock is worth 1/8th of the closest.
 *
 * - The number of sectors of cached data in the bucket, which gives us an
 *   indication of the cost in cache misses this eviction will cause.
 *
 * - The difference between the bucket's current gen and oldest gen of any
 *   pointer into it, which gives us an indication of the cost of an eventual
 *   btree GC to rewrite nodes with stale pointers.
 */

#define bucket_sort_key(g)						\
({									\
	unsigned long prio = g->read_prio - ca->min_prio[READ];		\
	prio = (prio * 7) / (ca->fs->prio_clock[READ].hand -		\
			     ca->min_prio[READ]);			\
									\
	(((prio + 1) * bucket_sectors_used(g)) << 8) | bucket_gc_gen(ca, g);\
})

static void invalidate_buckets_lru(struct bch_dev *ca)
{
	struct bucket_heap_entry e;
	struct bucket *g;
	unsigned i;

	mutex_lock(&ca->heap_lock);

	ca->heap.used = 0;

	mutex_lock(&ca->fs->bucket_lock);
	bch_recalc_min_prio(ca, READ);
	bch_recalc_min_prio(ca, WRITE);

	/*
	 * Find buckets with lowest read priority, by building a maxheap sorted
	 * by read priority and repeatedly replacing the maximum element until
	 * all buckets have been visited.
	 */
	for_each_bucket(g, ca) {
		if (!bch_can_invalidate_bucket(ca, g))
			continue;

		bucket_heap_push(ca, g, bucket_sort_key(g));
	}

	/* Sort buckets by physical location on disk for better locality */
	for (i = 0; i < ca->heap.used; i++) {
		struct bucket_heap_entry *e = &ca->heap.data[i];

		e->val = e->g - ca->buckets;
	}

	heap_resort(&ca->heap, bucket_max_cmp);

	/*
	 * If we run out of buckets to invalidate, bch_allocator_thread() will
	 * kick stuff and retry us
	 */
	while (!fifo_full(&ca->free_inc) &&
	       heap_pop(&ca->heap, e, bucket_max_cmp)) {
		BUG_ON(!bch_can_invalidate_bucket(ca, e.g));
		bch_invalidate_one_bucket(ca, e.g);
	}

	mutex_unlock(&ca->fs->bucket_lock);
	mutex_unlock(&ca->heap_lock);
}

static void invalidate_buckets_fifo(struct bch_dev *ca)
{
	struct bucket *g;
	size_t checked = 0;

	while (!fifo_full(&ca->free_inc)) {
		if (ca->fifo_last_bucket <  ca->mi.first_bucket ||
		    ca->fifo_last_bucket >= ca->mi.nbuckets)
			ca->fifo_last_bucket = ca->mi.first_bucket;

		g = ca->buckets + ca->fifo_last_bucket++;

		if (bch_can_invalidate_bucket(ca, g))
			bch_invalidate_one_bucket(ca, g);

		if (++checked >= ca->mi.nbuckets)
			return;
	}
}

static void invalidate_buckets_random(struct bch_dev *ca)
{
	struct bucket *g;
	size_t checked = 0;

	while (!fifo_full(&ca->free_inc)) {
		size_t n = bch_rand_range(ca->mi.nbuckets -
					  ca->mi.first_bucket) +
			ca->mi.first_bucket;

		g = ca->buckets + n;

		if (bch_can_invalidate_bucket(ca, g))
			bch_invalidate_one_bucket(ca, g);

		if (++checked >= ca->mi.nbuckets / 2)
			return;
	}
}

static void invalidate_buckets(struct bch_dev *ca)
{
	ca->inc_gen_needs_gc = 0;

	switch (ca->mi.replacement) {
	case CACHE_REPLACEMENT_LRU:
		invalidate_buckets_lru(ca);
		break;
	case CACHE_REPLACEMENT_FIFO:
		invalidate_buckets_fifo(ca);
		break;
	case CACHE_REPLACEMENT_RANDOM:
		invalidate_buckets_random(ca);
		break;
	}
}

static bool __bch_allocator_push(struct bch_dev *ca, long bucket)
{
	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
		goto success;

	if (fifo_push(&ca->free[RESERVE_MOVINGGC], bucket))
		goto success;

	if (fifo_push(&ca->free[RESERVE_BTREE], bucket))
		goto success;

	if (fifo_push(&ca->free[RESERVE_NONE], bucket))
		goto success;

	return false;
success:
	closure_wake_up(&ca->fs->freelist_wait);
	return true;
}

static bool bch_allocator_push(struct bch_dev *ca, long bucket)
{
	bool ret;

	spin_lock(&ca->freelist_lock);
	ret = __bch_allocator_push(ca, bucket);
	if (ret)
		fifo_pop(&ca->free_inc, bucket);
	spin_unlock(&ca->freelist_lock);

	return ret;
}

static void bch_find_empty_buckets(struct bch_fs *c, struct bch_dev *ca)
{
	u16 last_seq_ondisk = c->journal.last_seq_ondisk;
	struct bucket *g;

	for_each_bucket(g, ca) {
		struct bucket_mark m = READ_ONCE(g->mark);

		if (is_available_bucket(m) &&
		    !m.cached_sectors &&
		    !m.had_metadata &&
		    !bucket_needs_journal_commit(m, last_seq_ondisk)) {
			spin_lock(&ca->freelist_lock);

			bch_mark_alloc_bucket(ca, g, true);
			g->read_prio = c->prio_clock[READ].hand;
			g->write_prio = c->prio_clock[WRITE].hand;

			verify_not_on_freelist(ca, g - ca->buckets);
			BUG_ON(!fifo_push(&ca->free_inc, g - ca->buckets));

			spin_unlock(&ca->freelist_lock);

			if (fifo_full(&ca->free_inc))
				break;
		}
	}
}

/**
 * bch_allocator_thread - move buckets from free_inc to reserves
 *
 * The free_inc FIFO is populated by invalidate_buckets(), and
 * the reserves are depleted by bucket allocation. When we run out
 * of free_inc, try to invalidate some buckets and write out
 * prios and gens.
 */
static int bch_allocator_thread(void *arg)
{
	struct bch_dev *ca = arg;
	struct bch_fs *c = ca->fs;
	int ret;

	set_freezable();

	bch_find_empty_buckets(c, ca);

	while (1) {
		/*
		 * First, we pull buckets off of the free_inc list, possibly
		 * issue discards to them, then we add the bucket to a
		 * free list:
		 */

		while (!fifo_empty(&ca->free_inc)) {
			long bucket = fifo_peek(&ca->free_inc);

			/*
			 * Don't remove from free_inc until after it's added
			 * to freelist, so gc doesn't miss it while we've
			 * dropped bucket lock
			 */

			if (ca->mi.discard &&
			    blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev)))
				blkdev_issue_discard(ca->disk_sb.bdev,
					bucket_to_sector(ca, bucket),
					ca->mi.bucket_size, GFP_NOIO, 0);

			while (1) {
				set_current_state(TASK_INTERRUPTIBLE);
				if (bch_allocator_push(ca, bucket))
					break;

				if (kthread_should_stop()) {
					__set_current_state(TASK_RUNNING);
					goto out;
				}
				schedule();
				try_to_freeze();
			}

			__set_current_state(TASK_RUNNING);
		}

		down_read(&c->gc_lock);

		/*
		 * See if we have buckets we can reuse without invalidating them
		 * or forcing a journal commit:
		 */
		//bch_find_empty_buckets(c, ca);

		if (fifo_used(&ca->free_inc) * 2 > ca->free_inc.size) {
			up_read(&c->gc_lock);
			continue;
		}

		/* We've run out of free buckets! */

		while (!fifo_full(&ca->free_inc)) {
			if (wait_buckets_available(ca)) {
				up_read(&c->gc_lock);
				goto out;
			}

			/*
			 * Find some buckets that we can invalidate, either
			 * they're completely unused, or only contain clean data
			 * that's been written back to the backing device or
			 * another cache tier
			 */

			invalidate_buckets(ca);
			trace_bcache_alloc_batch(ca, fifo_used(&ca->free_inc),
						 ca->free_inc.size);
		}

		up_read(&c->gc_lock);

		/*
		 * free_inc is full of newly-invalidated buckets, must write out
		 * prios and gens before they can be re-used
		 */
		ret = bch_prio_write(ca);
		if (ret) {
			/*
			 * Emergency read only - allocator thread has to
			 * shutdown.
			 *
			 * N.B. we better be going into RO mode, else
			 * allocations would hang indefinitely - whatever
			 * generated the error will have sent us into RO mode.
			 *
			 * Clear out the free_inc freelist so things are
			 * consistent-ish:
			 */
			spin_lock(&ca->freelist_lock);
			while (!fifo_empty(&ca->free_inc)) {
				long bucket;

				fifo_pop(&ca->free_inc, bucket);
				bch_mark_free_bucket(ca, ca->buckets + bucket);
			}
			spin_unlock(&ca->freelist_lock);
			goto out;
		}
	}
out:
	/*
	 * Avoid a race with bch_usage_update() trying to wake us up after
	 * we've exited:
	 */
	synchronize_rcu();
	return 0;
}

/* Allocation */

/**
 * bch_bucket_alloc - allocate a single bucket from a specific device
 *
 * Returns index of bucket on success, 0 on failure
 * */
size_t bch_bucket_alloc(struct bch_dev *ca, enum alloc_reserve reserve)
{
	struct bucket *g;
	long r;

	spin_lock(&ca->freelist_lock);
	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
	    fifo_pop(&ca->free[reserve], r))
		goto out;

	spin_unlock(&ca->freelist_lock);

	trace_bcache_bucket_alloc_fail(ca, reserve);
	return 0;
out:
	verify_not_on_freelist(ca, r);
	spin_unlock(&ca->freelist_lock);

	trace_bcache_bucket_alloc(ca, reserve);

	bch_wake_allocator(ca);

	g = ca->buckets + r;

	g->read_prio = ca->fs->prio_clock[READ].hand;
	g->write_prio = ca->fs->prio_clock[WRITE].hand;

	return r;
}

static void __bch_bucket_free(struct bch_dev *ca, struct bucket *g)
{
	bch_mark_free_bucket(ca, g);

	g->read_prio = ca->fs->prio_clock[READ].hand;
	g->write_prio = ca->fs->prio_clock[WRITE].hand;
}

enum bucket_alloc_ret {
	ALLOC_SUCCESS,
	NO_DEVICES,		/* -EROFS */
	FREELIST_EMPTY,		/* Allocator thread not keeping up */
};

static void recalc_alloc_group_weights(struct bch_fs *c,
				       struct dev_group *devs)
{
	struct bch_dev *ca;
	u64 available_buckets = 1; /* avoid a divide by zero... */
	unsigned i;

	for (i = 0; i < devs->nr; i++) {
		ca = devs->d[i].dev;

		devs->d[i].weight = dev_buckets_free(ca);
		available_buckets += devs->d[i].weight;
	}

	for (i = 0; i < devs->nr; i++) {
		const unsigned min_weight = U32_MAX >> 4;
		const unsigned max_weight = U32_MAX;

		devs->d[i].weight =
			min_weight +
			div64_u64(devs->d[i].weight *
				  devs->nr *
				  (max_weight - min_weight),
				  available_buckets);
		devs->d[i].weight = min_t(u64, devs->d[i].weight, max_weight);
	}
}

static enum bucket_alloc_ret bch_bucket_alloc_group(struct bch_fs *c,
						    struct open_bucket *ob,
						    enum alloc_reserve reserve,
						    unsigned nr_replicas,
						    struct dev_group *devs,
						    long *devs_used)
{
	enum bucket_alloc_ret ret;
	unsigned fail_idx = -1, i;
	unsigned available = 0;

	BUG_ON(nr_replicas > ARRAY_SIZE(ob->ptrs));

	if (ob->nr_ptrs >= nr_replicas)
		return ALLOC_SUCCESS;

	spin_lock(&devs->lock);

	for (i = 0; i < devs->nr; i++)
		available += !test_bit(devs->d[i].dev->dev_idx,
				       devs_used);

	recalc_alloc_group_weights(c, devs);

	i = devs->cur_device;

	while (ob->nr_ptrs < nr_replicas) {
		struct bch_dev *ca;
		u64 bucket;

		if (!available) {
			ret = NO_DEVICES;
			goto err;
		}

		i++;
		i %= devs->nr;

		ret = FREELIST_EMPTY;
		if (i == fail_idx)
			goto err;

		ca = devs->d[i].dev;

		if (test_bit(ca->dev_idx, devs_used))
			continue;

		if (fail_idx == -1 &&
		    get_random_int() > devs->d[i].weight)
			continue;

		bucket = bch_bucket_alloc(ca, reserve);
		if (!bucket) {
			if (fail_idx == -1)
				fail_idx = i;
			continue;
		}

		/*
		 * open_bucket_add_buckets expects new pointers at the head of
		 * the list:
		 */
		memmove(&ob->ptrs[1],
			&ob->ptrs[0],
			ob->nr_ptrs * sizeof(ob->ptrs[0]));
		memmove(&ob->ptr_offset[1],
			&ob->ptr_offset[0],
			ob->nr_ptrs * sizeof(ob->ptr_offset[0]));
		ob->nr_ptrs++;
		ob->ptrs[0] = (struct bch_extent_ptr) {
			.gen	= ca->buckets[bucket].mark.gen,
			.offset	= bucket_to_sector(ca, bucket),
			.dev	= ca->dev_idx,
		};
		ob->ptr_offset[0] = 0;

		__set_bit(ca->dev_idx, devs_used);
		available--;
		devs->cur_device = i;
	}

	ret = ALLOC_SUCCESS;
err:
	EBUG_ON(ret != ALLOC_SUCCESS && reserve == RESERVE_MOVINGGC);
	spin_unlock(&devs->lock);
	return ret;
}

static enum bucket_alloc_ret __bch_bucket_alloc_set(struct bch_fs *c,
						    struct write_point *wp,
						    struct open_bucket *ob,
						    unsigned nr_replicas,
						    enum alloc_reserve reserve,
						    long *devs_used)
{
	struct bch_tier *tier;
	/*
	 * this should implement policy - for a given type of allocation, decide
	 * which devices to allocate from:
	 *
	 * XXX: switch off wp->type and do something more intelligent here
	 */
	if (wp->group)
		return bch_bucket_alloc_group(c, ob, reserve, nr_replicas,
					      wp->group, devs_used);

	/* foreground writes: prefer fastest tier: */
	tier = READ_ONCE(c->fastest_tier);
	if (tier)
		bch_bucket_alloc_group(c, ob, reserve, nr_replicas,
				       &tier->devs, devs_used);

	return bch_bucket_alloc_group(c, ob, reserve, nr_replicas,
				      &c->all_devs, devs_used);
}

static int bch_bucket_alloc_set(struct bch_fs *c, struct write_point *wp,
				struct open_bucket *ob, unsigned nr_replicas,
				enum alloc_reserve reserve, long *devs_used,
				struct closure *cl)
{
	bool waiting = false;

	while (1) {
		switch (__bch_bucket_alloc_set(c, wp, ob, nr_replicas,
					       reserve, devs_used)) {
		case ALLOC_SUCCESS:
			if (waiting)
				closure_wake_up(&c->freelist_wait);

			return 0;

		case NO_DEVICES:
			if (waiting)
				closure_wake_up(&c->freelist_wait);
			return -EROFS;

		case FREELIST_EMPTY:
			if (!cl || waiting)
				trace_bcache_freelist_empty_fail(c,
							reserve, cl);

			if (!cl)
				return -ENOSPC;

			if (waiting)
				return -EAGAIN;

			/* Retry allocation after adding ourself to waitlist: */
			closure_wait(&c->freelist_wait, cl);
			waiting = true;
			break;
		default:
			BUG();
		}
	}
}

/* Open buckets: */

/*
 * Open buckets represent one or more buckets (on multiple devices) that are
 * currently being allocated from. They serve two purposes:
 *
 *  - They track buckets that have been partially allocated, allowing for
 *    sub-bucket sized allocations - they're used by the sector allocator below
 *
 *  - They provide a reference to the buckets they own that mark and sweep GC
 *    can find, until the new allocation has a pointer to it inserted into the
 *    btree
 *
 * When allocating some space with the sector allocator, the allocation comes
 * with a reference to an open bucket - the caller is required to put that
 * reference _after_ doing the index update that makes its allocation reachable.
 */

static void __bch_open_bucket_put(struct bch_fs *c, struct open_bucket *ob)
{
	const struct bch_extent_ptr *ptr;

	lockdep_assert_held(&c->open_buckets_lock);

	open_bucket_for_each_ptr(ob, ptr) {
		struct bch_dev *ca = c->devs[ptr->dev];

		bch_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), false);
	}

	ob->nr_ptrs = 0;

	list_move(&ob->list, &c->open_buckets_free);
	c->open_buckets_nr_free++;
	closure_wake_up(&c->open_buckets_wait);
}

void bch_open_bucket_put(struct bch_fs *c, struct open_bucket *b)
{
	if (atomic_dec_and_test(&b->pin)) {
		spin_lock(&c->open_buckets_lock);
		__bch_open_bucket_put(c, b);
		spin_unlock(&c->open_buckets_lock);
	}
}

static struct open_bucket *bch_open_bucket_get(struct bch_fs *c,
					       unsigned nr_reserved,
					       struct closure *cl)
{
	struct open_bucket *ret;

	spin_lock(&c->open_buckets_lock);

	if (c->open_buckets_nr_free > nr_reserved) {
		BUG_ON(list_empty(&c->open_buckets_free));
		ret = list_first_entry(&c->open_buckets_free,
				       struct open_bucket, list);
		list_move(&ret->list, &c->open_buckets_open);
		BUG_ON(ret->nr_ptrs);

		atomic_set(&ret->pin, 1); /* XXX */
		ret->has_full_ptrs	= false;

		c->open_buckets_nr_free--;
		trace_bcache_open_bucket_alloc(c, cl);
	} else {
		trace_bcache_open_bucket_alloc_fail(c, cl);

		if (cl) {
			closure_wait(&c->open_buckets_wait, cl);
			ret = ERR_PTR(-EAGAIN);
		} else
			ret = ERR_PTR(-ENOSPC);
	}

	spin_unlock(&c->open_buckets_lock);

	return ret;
}

static unsigned ob_ptr_sectors_free(struct bch_fs *c,
				    struct open_bucket *ob,
				    struct bch_extent_ptr *ptr)
{
	struct bch_dev *ca = c->devs[ptr->dev];
	unsigned i = ptr - ob->ptrs;
	unsigned bucket_size = ca->mi.bucket_size;
	unsigned used = (ptr->offset & (bucket_size - 1)) +
		ob->ptr_offset[i];

	BUG_ON(used > bucket_size);

	return bucket_size - used;
}

static unsigned open_bucket_sectors_free(struct bch_fs *c,
					 struct open_bucket *ob,
					 unsigned nr_replicas)
{
	unsigned i, sectors_free = UINT_MAX;

	for (i = 0; i < min(nr_replicas, ob->nr_ptrs); i++)
		sectors_free = min(sectors_free,
				   ob_ptr_sectors_free(c, ob, &ob->ptrs[i]));

	return sectors_free != UINT_MAX ? sectors_free : 0;
}

static void open_bucket_copy_unused_ptrs(struct bch_fs *c,
					 struct open_bucket *new,
					 struct open_bucket *old)
{
	unsigned i;

	for (i = 0; i < old->nr_ptrs; i++)
		if (ob_ptr_sectors_free(c, old, &old->ptrs[i])) {
			struct bch_extent_ptr tmp = old->ptrs[i];

			tmp.offset += old->ptr_offset[i];
			new->ptrs[new->nr_ptrs] = tmp;
			new->ptr_offset[new->nr_ptrs] = 0;
			new->nr_ptrs++;
		}
}

static void verify_not_stale(struct bch_fs *c, const struct open_bucket *ob)
{
#ifdef CONFIG_BCACHE_DEBUG
	const struct bch_extent_ptr *ptr;

	open_bucket_for_each_ptr(ob, ptr) {
		struct bch_dev *ca = c->devs[ptr->dev];

		BUG_ON(ptr_stale(ca, ptr));
	}
#endif
}

/* Sector allocator */

static struct open_bucket *lock_writepoint(struct bch_fs *c,
					   struct write_point *wp)
{
	struct open_bucket *ob;

	while ((ob = ACCESS_ONCE(wp->b))) {
		mutex_lock(&ob->lock);
		if (wp->b == ob)
			break;

		mutex_unlock(&ob->lock);
	}

	return ob;
}

static int open_bucket_add_buckets(struct bch_fs *c,
				   struct write_point *wp,
				   struct open_bucket *ob,
				   unsigned nr_replicas,
				   unsigned nr_replicas_required,
				   enum alloc_reserve reserve,
				   struct closure *cl)
{
	long devs_used[BITS_TO_LONGS(BCH_SB_MEMBERS_MAX)];
	unsigned i;
	int ret;

	/*
	 * We might be allocating pointers to add to an existing extent
	 * (tiering/copygc/migration) - if so, some of the pointers in our
	 * existing open bucket might duplicate devices we already have. This is
	 * moderately annoying.
	 */

	/* Short circuit all the fun stuff if posssible: */
	if (ob->nr_ptrs >= nr_replicas)
		return 0;

	memset(devs_used, 0, sizeof(devs_used));

	for (i = 0; i < ob->nr_ptrs; i++)
		__set_bit(ob->ptrs[i].dev, devs_used);

	ret = bch_bucket_alloc_set(c, wp, ob, nr_replicas,
				   reserve, devs_used, cl);

	if (ret == -EROFS &&
	    ob->nr_ptrs >= nr_replicas_required)
		ret = 0;

	return ret;
}

/*
 * Get us an open_bucket we can allocate from, return with it locked:
 */
struct open_bucket *bch_alloc_sectors_start(struct bch_fs *c,
					    struct write_point *wp,
					    unsigned nr_replicas,
					    unsigned nr_replicas_required,
					    enum alloc_reserve reserve,
					    struct closure *cl)
{
	struct open_bucket *ob;
	unsigned open_buckets_reserved = wp == &c->btree_write_point
		? 0 : BTREE_NODE_RESERVE;
	int ret;

	BUG_ON(!reserve);
	BUG_ON(!nr_replicas);
retry:
	ob = lock_writepoint(c, wp);

	/*
	 * If ob->sectors_free == 0, one or more of the buckets ob points to is
	 * full. We can't drop pointers from an open bucket - garbage collection
	 * still needs to find them; instead, we must allocate a new open bucket
	 * and copy any pointers to non-full buckets into the new open bucket.
	 */
	if (!ob || ob->has_full_ptrs) {
		struct open_bucket *new_ob;

		new_ob = bch_open_bucket_get(c, open_buckets_reserved, cl);
		if (IS_ERR(new_ob))
			return new_ob;

		mutex_lock(&new_ob->lock);

		/*
		 * We point the write point at the open_bucket before doing the
		 * allocation to avoid a race with shutdown:
		 */
		if (race_fault() ||
		    cmpxchg(&wp->b, ob, new_ob) != ob) {
			/* We raced: */
			mutex_unlock(&new_ob->lock);
			bch_open_bucket_put(c, new_ob);

			if (ob)
				mutex_unlock(&ob->lock);
			goto retry;
		}

		if (ob) {
			open_bucket_copy_unused_ptrs(c, new_ob, ob);
			mutex_unlock(&ob->lock);
			bch_open_bucket_put(c, ob);
		}

		ob = new_ob;
	}

	ret = open_bucket_add_buckets(c, wp, ob, nr_replicas,
				      nr_replicas_required,
				      reserve, cl);
	if (ret) {
		mutex_unlock(&ob->lock);
		return ERR_PTR(ret);
	}

	ob->sectors_free = open_bucket_sectors_free(c, ob, nr_replicas);

	BUG_ON(!ob->sectors_free);
	verify_not_stale(c, ob);

	return ob;
}

/*
 * Append pointers to the space we just allocated to @k, and mark @sectors space
 * as allocated out of @ob
 */
void bch_alloc_sectors_append_ptrs(struct bch_fs *c, struct bkey_i_extent *e,
				   unsigned nr_replicas, struct open_bucket *ob,
				   unsigned sectors)
{
	struct bch_extent_ptr tmp;
	bool has_data = false;
	unsigned i;

	/*
	 * We're keeping any existing pointer k has, and appending new pointers:
	 * __bch_write() will only write to the pointers we add here:
	 */

	BUG_ON(sectors > ob->sectors_free);

	/* didn't use all the ptrs: */
	if (nr_replicas < ob->nr_ptrs)
		has_data = true;

	for (i = 0; i < min(ob->nr_ptrs, nr_replicas); i++) {
		EBUG_ON(bch_extent_has_device(extent_i_to_s_c(e), ob->ptrs[i].dev));

		tmp = ob->ptrs[i];
		tmp.cached = bkey_extent_is_cached(&e->k);
		tmp.offset += ob->ptr_offset[i];
		extent_ptr_append(e, tmp);

		ob->ptr_offset[i] += sectors;

		this_cpu_add(*c->devs[tmp.dev]->sectors_written, sectors);
	}
}

/*
 * Append pointers to the space we just allocated to @k, and mark @sectors space
 * as allocated out of @ob
 */
void bch_alloc_sectors_done(struct bch_fs *c, struct write_point *wp,
			    struct open_bucket *ob)
{
	bool has_data = false;
	unsigned i;

	for (i = 0; i < ob->nr_ptrs; i++) {
		if (!ob_ptr_sectors_free(c, ob, &ob->ptrs[i]))
			ob->has_full_ptrs = true;
		else
			has_data = true;
	}

	if (likely(has_data))
		atomic_inc(&ob->pin);
	else
		BUG_ON(xchg(&wp->b, NULL) != ob);

	mutex_unlock(&ob->lock);
}

/*
 * Allocates some space in the cache to write to, and k to point to the newly
 * allocated space, and updates k->size and k->offset (to point to the
 * end of the newly allocated space).
 *
 * May allocate fewer sectors than @sectors, k->size indicates how many
 * sectors were actually allocated.
 *
 * Return codes:
 * - -EAGAIN: closure was added to waitlist
 * - -ENOSPC: out of space and no closure provided
 *
 * @c  - filesystem.
 * @wp - write point to use for allocating sectors.
 * @k  - key to return the allocated space information.
 * @cl - closure to wait for a bucket
 */
struct open_bucket *bch_alloc_sectors(struct bch_fs *c,
				      struct write_point *wp,
				      struct bkey_i_extent *e,
				      unsigned nr_replicas,
				      unsigned nr_replicas_required,
				      enum alloc_reserve reserve,
				      struct closure *cl)
{
	struct open_bucket *ob;

	ob = bch_alloc_sectors_start(c, wp, nr_replicas,
				     nr_replicas_required,
				     reserve, cl);
	if (IS_ERR_OR_NULL(ob))
		return ob;

	if (e->k.size > ob->sectors_free)
		bch_key_resize(&e->k, ob->sectors_free);

	bch_alloc_sectors_append_ptrs(c, e, nr_replicas, ob, e->k.size);

	bch_alloc_sectors_done(c, wp, ob);

	return ob;
}

/* Startup/shutdown (ro/rw): */

void bch_recalc_capacity(struct bch_fs *c)
{
	struct bch_tier *fastest_tier = NULL, *slowest_tier = NULL, *tier;
	struct bch_dev *ca;
	u64 total_capacity, capacity = 0, reserved_sectors = 0;
	unsigned long ra_pages = 0;
	unsigned i, j;

	for_each_online_member(ca, c, i) {
		struct backing_dev_info *bdi =
			blk_get_backing_dev_info(ca->disk_sb.bdev);

		ra_pages += bdi->ra_pages;
	}

	c->bdi.ra_pages = ra_pages;

	/* Find fastest, slowest tiers with devices: */

	for (tier = c->tiers;
	     tier < c->tiers + ARRAY_SIZE(c->tiers); tier++) {
		if (!tier->devs.nr)
			continue;
		if (!fastest_tier)
			fastest_tier = tier;
		slowest_tier = tier;
	}

	c->fastest_tier = fastest_tier != slowest_tier ? fastest_tier : NULL;

	c->promote_write_point.group = &fastest_tier->devs;

	if (!fastest_tier)
		goto set_capacity;

	/*
	 * Capacity of the filesystem is the capacity of all the devices in the
	 * slowest (highest) tier - we don't include lower tier devices.
	 */
	spin_lock(&slowest_tier->devs.lock);
	group_for_each_dev(ca, &slowest_tier->devs, i) {
		size_t reserve = 0;

		/*
		 * We need to reserve buckets (from the number
		 * of currently available buckets) against
		 * foreground writes so that mainly copygc can
		 * make forward progress.
		 *
		 * We need enough to refill the various reserves
		 * from scratch - copygc will use its entire
		 * reserve all at once, then run against when
		 * its reserve is refilled (from the formerly
		 * available buckets).
		 *
		 * This reserve is just used when considering if
		 * allocations for foreground writes must wait -
		 * not -ENOSPC calculations.
		 */
		for (j = 0; j < RESERVE_NONE; j++)
			reserve += ca->free[j].size;

		reserve += ca->free_inc.size;

		reserve += ARRAY_SIZE(c->write_points);

		if (ca->mi.tier)
			reserve += 1;	/* tiering write point */
		reserve += 1;		/* btree write point */

		reserved_sectors += reserve << ca->bucket_bits;

		capacity += (ca->mi.nbuckets -
			     ca->mi.first_bucket) <<
			ca->bucket_bits;
	}
	spin_unlock(&slowest_tier->devs.lock);
set_capacity:
	total_capacity = capacity;

	capacity *= (100 - c->opts.gc_reserve_percent);
	capacity = div64_u64(capacity, 100);

	BUG_ON(capacity + reserved_sectors > total_capacity);

	c->capacity = capacity;

	if (c->capacity) {
		bch_io_timer_add(&c->io_clock[READ],
				 &c->prio_clock[READ].rescale);
		bch_io_timer_add(&c->io_clock[WRITE],
				 &c->prio_clock[WRITE].rescale);
	} else {
		bch_io_timer_del(&c->io_clock[READ],
				 &c->prio_clock[READ].rescale);
		bch_io_timer_del(&c->io_clock[WRITE],
				 &c->prio_clock[WRITE].rescale);
	}

	/* Wake up case someone was waiting for buckets */
	closure_wake_up(&c->freelist_wait);
}

static void bch_stop_write_point(struct bch_dev *ca,
				 struct write_point *wp)
{
	struct bch_fs *c = ca->fs;
	struct open_bucket *ob;
	struct bch_extent_ptr *ptr;

	ob = lock_writepoint(c, wp);
	if (!ob)
		return;

	for (ptr = ob->ptrs; ptr < ob->ptrs + ob->nr_ptrs; ptr++)
		if (ptr->dev == ca->dev_idx)
			goto found;

	mutex_unlock(&ob->lock);
	return;
found:
	BUG_ON(xchg(&wp->b, NULL) != ob);
	mutex_unlock(&ob->lock);

	/* Drop writepoint's ref: */
	bch_open_bucket_put(c, ob);
}

static bool bch_dev_has_open_write_point(struct bch_dev *ca)
{
	struct bch_fs *c = ca->fs;
	struct bch_extent_ptr *ptr;
	struct open_bucket *ob;

	for (ob = c->open_buckets;
	     ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
	     ob++)
		if (atomic_read(&ob->pin)) {
			mutex_lock(&ob->lock);
			for (ptr = ob->ptrs; ptr < ob->ptrs + ob->nr_ptrs; ptr++)
				if (ptr->dev == ca->dev_idx) {
					mutex_unlock(&ob->lock);
					return true;
				}
			mutex_unlock(&ob->lock);
		}

	return false;
}

/* device goes ro: */
void bch_dev_allocator_stop(struct bch_dev *ca)
{
	struct bch_fs *c = ca->fs;
	struct dev_group *tier = &c->tiers[ca->mi.tier].devs;
	struct task_struct *p;
	struct closure cl;
	unsigned i;

	closure_init_stack(&cl);

	/* First, remove device from allocation groups: */

	bch_dev_group_remove(tier, ca);
	bch_dev_group_remove(&c->all_devs, ca);

	bch_recalc_capacity(c);

	/*
	 * Stopping the allocator thread comes after removing from allocation
	 * groups, else pending allocations will hang:
	 */

	p = ca->alloc_thread;
	ca->alloc_thread = NULL;
	smp_wmb();

	/*
	 * We need an rcu barrier between setting ca->alloc_thread = NULL and
	 * the thread shutting down to avoid a race with bch_usage_update() -
	 * the allocator thread itself does a synchronize_rcu() on exit.
	 *
	 * XXX: it would be better to have the rcu barrier be asynchronous
	 * instead of blocking us here
	 */
	if (p) {
		kthread_stop(p);
		put_task_struct(p);
	}

	/* Next, close write points that point to this device... */

	for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
		bch_stop_write_point(ca, &c->write_points[i]);

	bch_stop_write_point(ca, &ca->copygc_write_point);
	bch_stop_write_point(ca, &c->promote_write_point);
	bch_stop_write_point(ca, &ca->tiering_write_point);
	bch_stop_write_point(ca, &c->migration_write_point);
	bch_stop_write_point(ca, &c->btree_write_point);

	mutex_lock(&c->btree_reserve_cache_lock);
	while (c->btree_reserve_cache_nr) {
		struct btree_alloc *a =
			&c->btree_reserve_cache[--c->btree_reserve_cache_nr];

		bch_open_bucket_put(c, a->ob);
	}
	mutex_unlock(&c->btree_reserve_cache_lock);

	/* Avoid deadlocks.. */

	closure_wake_up(&c->freelist_wait);
	wake_up(&c->journal.wait);

	/* Now wait for any in flight writes: */

	while (1) {
		closure_wait(&c->open_buckets_wait, &cl);

		if (!bch_dev_has_open_write_point(ca)) {
			closure_wake_up(&c->open_buckets_wait);
			break;
		}

		closure_sync(&cl);
	}
}

/*
 * Startup the allocator thread for transition to RW mode:
 */
int bch_dev_allocator_start(struct bch_dev *ca)
{
	struct bch_fs *c = ca->fs;
	struct dev_group *tier = &c->tiers[ca->mi.tier].devs;
	struct bch_sb_field_journal *journal_buckets;
	bool has_journal;
	struct task_struct *k;

	/*
	 * allocator thread already started?
	 */
	if (ca->alloc_thread)
		return 0;

	k = kthread_create(bch_allocator_thread, ca, "bcache_allocator");
	if (IS_ERR(k))
		return 0;

	get_task_struct(k);
	ca->alloc_thread = k;

	bch_dev_group_add(tier, ca);
	bch_dev_group_add(&c->all_devs, ca);

	mutex_lock(&c->sb_lock);
	journal_buckets = bch_sb_get_journal(ca->disk_sb.sb);
	has_journal = bch_nr_journal_buckets(journal_buckets) >=
		BCH_JOURNAL_BUCKETS_MIN;
	mutex_unlock(&c->sb_lock);

	if (has_journal)
		bch_dev_group_add(&c->journal.devs, ca);

	bch_recalc_capacity(c);

	/*
	 * Don't wake up allocator thread until after adding device to
	 * allocator groups - otherwise, alloc thread could get a spurious
	 * -EROFS due to prio_write() -> journal_meta() not finding any devices:
	 */
	wake_up_process(k);
	return 0;
}

void bch_fs_allocator_init(struct bch_fs *c)
{
	unsigned i;

	INIT_LIST_HEAD(&c->open_buckets_open);
	INIT_LIST_HEAD(&c->open_buckets_free);
	spin_lock_init(&c->open_buckets_lock);
	bch_prio_timer_init(c, READ);
	bch_prio_timer_init(c, WRITE);

	/* open bucket 0 is a sentinal NULL: */
	mutex_init(&c->open_buckets[0].lock);
	INIT_LIST_HEAD(&c->open_buckets[0].list);

	for (i = 1; i < ARRAY_SIZE(c->open_buckets); i++) {
		mutex_init(&c->open_buckets[i].lock);
		c->open_buckets_nr_free++;
		list_add(&c->open_buckets[i].list, &c->open_buckets_free);
	}

	spin_lock_init(&c->all_devs.lock);

	for (i = 0; i < ARRAY_SIZE(c->tiers); i++)
		spin_lock_init(&c->tiers[i].devs.lock);

	for (i = 0; i < ARRAY_SIZE(c->write_points); i++)
		c->write_points[i].throttle = true;

	c->pd_controllers_update_seconds = 5;
	INIT_DELAYED_WORK(&c->pd_controllers_update, pd_controllers_update);

	spin_lock_init(&c->foreground_write_pd_lock);
	bch_pd_controller_init(&c->foreground_write_pd);
	/*
	 * We do not want the write rate to have an effect on the computed
	 * rate, for two reasons:
	 *
	 * We do not call bch_ratelimit_delay() at all if the write rate
	 * exceeds 1GB/s. In this case, the PD controller will think we are
	 * not "keeping up" and not change the rate.
	 */
	c->foreground_write_pd.backpressure = 0;
	init_timer(&c->foreground_write_wakeup);

	c->foreground_write_wakeup.data = (unsigned long) c;
	c->foreground_write_wakeup.function = bch_wake_delayed_writes;
}