diff options
Diffstat (limited to 'fs/bcachefs/vendor/min_heap.h')
-rw-r--r-- | fs/bcachefs/vendor/min_heap.h | 477 |
1 files changed, 477 insertions, 0 deletions
diff --git a/fs/bcachefs/vendor/min_heap.h b/fs/bcachefs/vendor/min_heap.h new file mode 100644 index 000000000000..865c8b33b11f --- /dev/null +++ b/fs/bcachefs/vendor/min_heap.h @@ -0,0 +1,477 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_MIN_HEAP_H +#define _LINUX_MIN_HEAP_H + +#include <linux/bug.h> +#include <linux/string.h> +#include <linux/types.h> + +/* + * The Min Heap API provides utilities for managing min-heaps, a binary tree + * structure where each node's value is less than or equal to its children's + * values, ensuring the smallest element is at the root. + * + * Users should avoid directly calling functions prefixed with __min_heap_*(). + * Instead, use the provided macro wrappers. + * + * For further details and examples, refer to Documentation/core-api/min_heap.rst. + */ + +/** + * Data structure to hold a min-heap. + * @nr: Number of elements currently in the heap. + * @size: Maximum number of elements that can be held in current storage. + * @data: Pointer to the start of array holding the heap elements. + * @preallocated: Start of the static preallocated array holding the heap elements. + */ +#define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \ +struct _name { \ + size_t nr; \ + size_t size; \ + _type *data; \ + _type preallocated[_nr]; \ +} + +#define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0) + +typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char; + +#define __minheap_cast(_heap) (typeof((_heap)->data[0]) *) +#define __minheap_obj_size(_heap) sizeof((_heap)->data[0]) + +/** + * struct min_heap_callbacks - Data/functions to customise the min_heap. + * @less: Partial order function for this heap. + * @swp: Swap elements function. + */ +struct min_heap_callbacks { + bool (*less)(const void *lhs, const void *rhs, void *args); + void (*swp)(void *lhs, void *rhs, void *args); +}; + +/** + * is_aligned - is this pointer & size okay for word-wide copying? + * @base: pointer to data + * @size: size of each element + * @align: required alignment (typically 4 or 8) + * + * Returns true if elements can be copied using word loads and stores. + * The size must be a multiple of the alignment, and the base address must + * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. + * + * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" + * to "if ((a | b) & mask)", so we do that by hand. + */ +__attribute_const__ __always_inline +static bool is_aligned(const void *base, size_t size, unsigned char align) +{ + unsigned char lsbits = (unsigned char)size; + + (void)base; +#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS + lsbits |= (unsigned char)(uintptr_t)base; +#endif + return (lsbits & (align - 1)) == 0; +} + +/** + * swap_words_32 - swap two elements in 32-bit chunks + * @a: pointer to the first element to swap + * @b: pointer to the second element to swap + * @n: element size (must be a multiple of 4) + * + * Exchange the two objects in memory. This exploits base+index addressing, + * which basically all CPUs have, to minimize loop overhead computations. + * + * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the + * bottom of the loop, even though the zero flag is still valid from the + * subtract (since the intervening mov instructions don't alter the flags). + * Gcc 8.1.0 doesn't have that problem. + */ +static __always_inline +void swap_words_32(void *a, void *b, size_t n) +{ + do { + u32 t = *(u32 *)(a + (n -= 4)); + *(u32 *)(a + n) = *(u32 *)(b + n); + *(u32 *)(b + n) = t; + } while (n); +} + +/** + * swap_words_64 - swap two elements in 64-bit chunks + * @a: pointer to the first element to swap + * @b: pointer to the second element to swap + * @n: element size (must be a multiple of 8) + * + * Exchange the two objects in memory. This exploits base+index + * addressing, which basically all CPUs have, to minimize loop overhead + * computations. + * + * We'd like to use 64-bit loads if possible. If they're not, emulating + * one requires base+index+4 addressing which x86 has but most other + * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, + * but it's possible to have 64-bit loads without 64-bit pointers (e.g. + * x32 ABI). Are there any cases the kernel needs to worry about? + */ +static __always_inline +void swap_words_64(void *a, void *b, size_t n) +{ + do { +#ifdef CONFIG_64BIT + u64 t = *(u64 *)(a + (n -= 8)); + *(u64 *)(a + n) = *(u64 *)(b + n); + *(u64 *)(b + n) = t; +#else + /* Use two 32-bit transfers to avoid base+index+4 addressing */ + u32 t = *(u32 *)(a + (n -= 4)); + *(u32 *)(a + n) = *(u32 *)(b + n); + *(u32 *)(b + n) = t; + + t = *(u32 *)(a + (n -= 4)); + *(u32 *)(a + n) = *(u32 *)(b + n); + *(u32 *)(b + n) = t; +#endif + } while (n); +} + +/** + * swap_bytes - swap two elements a byte at a time + * @a: pointer to the first element to swap + * @b: pointer to the second element to swap + * @n: element size + * + * This is the fallback if alignment doesn't allow using larger chunks. + */ +static __always_inline +void swap_bytes(void *a, void *b, size_t n) +{ + do { + char t = ((char *)a)[--n]; + ((char *)a)[n] = ((char *)b)[n]; + ((char *)b)[n] = t; + } while (n); +} + +/* + * The values are arbitrary as long as they can't be confused with + * a pointer, but small integers make for the smallest compare + * instructions. + */ +#define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0) +#define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1) +#define SWAP_BYTES ((void (*)(void *, void *, void *))2) + +/* + * Selects the appropriate swap function based on the element size. + */ +static __always_inline +void *select_swap_func(const void *base, size_t size) +{ + if (is_aligned(base, size, 8)) + return SWAP_WORDS_64; + else if (is_aligned(base, size, 4)) + return SWAP_WORDS_32; + else + return SWAP_BYTES; +} + +static __always_inline +void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args), + void *priv) +{ + if (swap_func == SWAP_WORDS_64) + swap_words_64(a, b, size); + else if (swap_func == SWAP_WORDS_32) + swap_words_32(a, b, size); + else if (swap_func == SWAP_BYTES) + swap_bytes(a, b, size); + else + swap_func(a, b, priv); +} + +/** + * parent - given the offset of the child, find the offset of the parent. + * @i: the offset of the heap element whose parent is sought. Non-zero. + * @lsbit: a precomputed 1-bit mask, equal to "size & -size" + * @size: size of each element + * + * In terms of array indexes, the parent of element j = @i/@size is simply + * (j-1)/2. But when working in byte offsets, we can't use implicit + * truncation of integer divides. + * + * Fortunately, we only need one bit of the quotient, not the full divide. + * @size has a least significant bit. That bit will be clear if @i is + * an even multiple of @size, and set if it's an odd multiple. + * + * Logically, we're doing "if (i & lsbit) i -= size;", but since the + * branch is unpredictable, it's done with a bit of clever branch-free + * code instead. + */ +__attribute_const__ __always_inline +static size_t parent(size_t i, unsigned int lsbit, size_t size) +{ + i -= size; + i -= size & -(i & lsbit); + return i / 2; +} + +/* Initialize a min-heap. */ +static __always_inline +void __min_heap_init_inline(min_heap_char *heap, void *data, size_t size) +{ + heap->nr = 0; + heap->size = size; + if (data) + heap->data = data; + else + heap->data = heap->preallocated; +} + +#define min_heap_init_inline(_heap, _data, _size) \ + __min_heap_init_inline(container_of(&(_heap)->nr, min_heap_char, nr), _data, _size) + +/* Get the minimum element from the heap. */ +static __always_inline +void *__min_heap_peek_inline(struct min_heap_char *heap) +{ + return heap->nr ? heap->data : NULL; +} + +#define min_heap_peek_inline(_heap) \ + (__minheap_cast(_heap) \ + __min_heap_peek_inline(container_of(&(_heap)->nr, min_heap_char, nr))) + +/* Check if the heap is full. */ +static __always_inline +bool __min_heap_full_inline(min_heap_char *heap) +{ + return heap->nr == heap->size; +} + +#define min_heap_full_inline(_heap) \ + __min_heap_full_inline(container_of(&(_heap)->nr, min_heap_char, nr)) + +/* Sift the element at pos down the heap. */ +static __always_inline +void __min_heap_sift_down_inline(min_heap_char *heap, size_t pos, size_t elem_size, + const struct min_heap_callbacks *func, void *args) +{ + const unsigned long lsbit = elem_size & -elem_size; + void *data = heap->data; + void (*swp)(void *lhs, void *rhs, void *args) = func->swp; + /* pre-scale counters for performance */ + size_t a = pos * elem_size; + size_t b, c, d; + size_t n = heap->nr * elem_size; + + if (!swp) + swp = select_swap_func(data, elem_size); + + /* Find the sift-down path all the way to the leaves. */ + for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;) + b = func->less(data + c, data + d, args) ? c : d; + + /* Special case for the last leaf with no sibling. */ + if (d == n) + b = c; + + /* Backtrack to the correct location. */ + while (b != a && func->less(data + a, data + b, args)) + b = parent(b, lsbit, elem_size); + + /* Shift the element into its correct place. */ + c = b; + while (b != a) { + b = parent(b, lsbit, elem_size); + do_swap(data + b, data + c, elem_size, swp, args); + } +} + +#define min_heap_sift_down_inline(_heap, _pos, _func, _args) \ + __min_heap_sift_down_inline(container_of(&(_heap)->nr, min_heap_char, nr), _pos, \ + __minheap_obj_size(_heap), _func, _args) + +/* Sift up ith element from the heap, O(log2(nr)). */ +static __always_inline +void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx, + const struct min_heap_callbacks *func, void *args) +{ + const unsigned long lsbit = elem_size & -elem_size; + void *data = heap->data; + void (*swp)(void *lhs, void *rhs, void *args) = func->swp; + /* pre-scale counters for performance */ + size_t a = idx * elem_size, b; + + if (!swp) + swp = select_swap_func(data, elem_size); + + while (a) { + b = parent(a, lsbit, elem_size); + if (func->less(data + b, data + a, args)) + break; + do_swap(data + a, data + b, elem_size, swp, args); + a = b; + } +} + +#define min_heap_sift_up_inline(_heap, _idx, _func, _args) \ + __min_heap_sift_up_inline(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _idx, _func, _args) + +/* Floyd's approach to heapification that is O(nr). */ +static __always_inline +void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size, + const struct min_heap_callbacks *func, void *args) +{ + ssize_t i; + + for (i = heap->nr / 2 - 1; i >= 0; i--) + __min_heap_sift_down_inline(heap, i, elem_size, func, args); +} + +#define min_heapify_all_inline(_heap, _func, _args) \ + __min_heapify_all_inline(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _func, _args) + +/* Remove minimum element from the heap, O(log2(nr)). */ +static __always_inline +bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size, + const struct min_heap_callbacks *func, void *args) +{ + void *data = heap->data; + + if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) + return false; + + /* Place last element at the root (position 0) and then sift down. */ + heap->nr--; + memcpy(data, data + (heap->nr * elem_size), elem_size); + __min_heap_sift_down_inline(heap, 0, elem_size, func, args); + + return true; +} + +#define min_heap_pop_inline(_heap, _func, _args) \ + __min_heap_pop_inline(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _func, _args) + +/* + * Remove the minimum element and then push the given element. The + * implementation performs 1 sift (O(log2(nr))) and is therefore more + * efficient than a pop followed by a push that does 2. + */ +static __always_inline +void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size, + const struct min_heap_callbacks *func, void *args) +{ + memcpy(heap->data, element, elem_size); + __min_heap_sift_down_inline(heap, 0, elem_size, func, args); +} + +#define min_heap_pop_push_inline(_heap, _element, _func, _args) \ + __min_heap_pop_push_inline(container_of(&(_heap)->nr, min_heap_char, nr), _element, \ + __minheap_obj_size(_heap), _func, _args) + +/* Push an element on to the heap, O(log2(nr)). */ +static __always_inline +bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size, + const struct min_heap_callbacks *func, void *args) +{ + void *data = heap->data; + size_t pos; + + if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) + return false; + + /* Place at the end of data. */ + pos = heap->nr; + memcpy(data + (pos * elem_size), element, elem_size); + heap->nr++; + + /* Sift child at pos up. */ + __min_heap_sift_up_inline(heap, elem_size, pos, func, args); + + return true; +} + +#define min_heap_push_inline(_heap, _element, _func, _args) \ + __min_heap_push_inline(container_of(&(_heap)->nr, min_heap_char, nr), _element, \ + __minheap_obj_size(_heap), _func, _args) + +/* Remove ith element from the heap, O(log2(nr)). */ +static __always_inline +bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx, + const struct min_heap_callbacks *func, void *args) +{ + void *data = heap->data; + void (*swp)(void *lhs, void *rhs, void *args) = func->swp; + + if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) + return false; + + if (!swp) + swp = select_swap_func(data, elem_size); + + /* Place last element at the root (position 0) and then sift down. */ + heap->nr--; + if (idx == heap->nr) + return true; + do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args); + __min_heap_sift_up_inline(heap, elem_size, idx, func, args); + __min_heap_sift_down_inline(heap, idx, elem_size, func, args); + + return true; +} + +#define min_heap_del_inline(_heap, _idx, _func, _args) \ + __min_heap_del_inline(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _idx, _func, _args) + +void __bch2_min_heap_init(min_heap_char *heap, void *data, size_t size); +void *__bch2_min_heap_peek(struct min_heap_char *heap); +bool __bch2_min_heap_full(min_heap_char *heap); +void __bch2_min_heap_sift_down(min_heap_char *heap, size_t pos, size_t elem_size, + const struct min_heap_callbacks *func, void *args); +void __bch2_min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx, + const struct min_heap_callbacks *func, void *args); +void __bch2_min_heapify_all(min_heap_char *heap, size_t elem_size, + const struct min_heap_callbacks *func, void *args); +bool __bch2_min_heap_pop(min_heap_char *heap, size_t elem_size, + const struct min_heap_callbacks *func, void *args); +void __bch2_min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size, + const struct min_heap_callbacks *func, void *args); +bool __bch2_min_heap_push(min_heap_char *heap, const void *element, size_t elem_size, + const struct min_heap_callbacks *func, void *args); +bool __bch2_min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx, + const struct min_heap_callbacks *func, void *args); + +#define min_heap_init(_heap, _data, _size) \ + __bch2_min_heap_init(container_of(&(_heap)->nr, min_heap_char, nr), _data, _size) +#define min_heap_peek(_heap) \ + (__minheap_cast(_heap) __bch2_min_heap_peek(container_of(&(_heap)->nr, min_heap_char, nr))) +#define min_heap_full(_heap) \ + __bch2_min_heap_full(container_of(&(_heap)->nr, min_heap_char, nr)) +#define min_heap_sift_down(_heap, _pos, _func, _args) \ + __bch2_min_heap_sift_down(container_of(&(_heap)->nr, min_heap_char, nr), _pos, \ + __minheap_obj_size(_heap), _func, _args) +#define min_heap_sift_up(_heap, _idx, _func, _args) \ + __bch2_min_heap_sift_up(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _idx, _func, _args) +#define min_heapify_all(_heap, _func, _args) \ + __bch2_min_heapify_all(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _func, _args) +#define min_heap_pop(_heap, _func, _args) \ + __bch2_min_heap_pop(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _func, _args) +#define min_heap_pop_push(_heap, _element, _func, _args) \ + __bch2_min_heap_pop_push(container_of(&(_heap)->nr, min_heap_char, nr), _element, \ + __minheap_obj_size(_heap), _func, _args) +#define min_heap_push(_heap, _element, _func, _args) \ + __bch2_min_heap_push(container_of(&(_heap)->nr, min_heap_char, nr), _element, \ + __minheap_obj_size(_heap), _func, _args) +#define min_heap_del(_heap, _idx, _func, _args) \ + __bch2_min_heap_del(container_of(&(_heap)->nr, min_heap_char, nr), \ + __minheap_obj_size(_heap), _idx, _func, _args) + +#endif /* _LINUX_MIN_HEAP_H */ |